Search results
Results from the WOW.Com Content Network
Light soaking refers to the change in power output of solar cells which can be measured after illumination. This can either be an increase or decrease, depending on the type of solar cell. This can either be an increase or decrease, depending on the type of solar cell.
A photoactive layer is used in solar cells for absorbing light. It can be found in all solar cells, but with different panels the photoactive layer is made of different materials. Inorganic layers are made from inorganic materials such as silicon. The film has a layer arrangement of electrodes and counter electrode with organic layers in ...
An organic solar cell (OSC [1]) or plastic solar cell is a type of photovoltaic that uses organic electronics, a branch of electronics that deals with conductive organic polymers or small organic molecules, [2] for light absorption and charge transport to produce electricity from sunlight by the photovoltaic effect.
The theory of solar cells explains the process by which light energy in photons is converted into electric current when the photons strike a suitable semiconductor device. The theoretical studies are of practical use because they predict the fundamental limits of a solar cell , and give guidance on the phenomena that contribute to losses and ...
In a typical solar cell, the photovoltaic effect is used to generate electricity from sunlight. The light-absorbing or "active layer" of the solar cell is typically a semiconducting material, meaning that there is a gap in its energy spectrum between the valence band of localized electrons around host ions and the conduction band of higher-energy electrons which are free to move throughout the ...
Photochemical immersion well reactor (50 mL) with a mercury-vapor lamp.. Photochemistry is the branch of chemistry concerned with the chemical effects of light. Generally, this term is used to describe a chemical reaction caused by absorption of ultraviolet (wavelength from 100 to 400 nm), visible (400–750 nm), or infrared radiation (750–2500 nm).
The first demonstration of the photovoltaic effect, by Edmond Becquerel in 1839, used an electrochemical cell. He explained his discovery in Comptes rendus de l'Académie des sciences, "the production of an electric current when two plates of platinum or gold immersed in an acid, neutral, or alkaline solution are exposed in an uneven way to solar radiation."
Single wall carbon nanotubes possess a wide range of direct bandgaps matching the solar spectrum, strong photoabsorption, from infrared to ultraviolet, and high carrier mobility and reduced carrier transport scattering, which make themselves ideal photovoltaic material.