Search results
Results from the WOW.Com Content Network
Some particles are dissolved in a glass of water. At first, the particles are all near one top corner of the glass. If the particles randomly move around ("diffuse") in the water, they eventually become distributed randomly and uniformly from an area of high concentration to an area of low, and organized (diffusion continues, but with no net flux).
Molecular diffusion, often simply called diffusion, is the thermal motion of all (liquid or gas) particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of the particles.
[34] [35] Also, fluid particles can be adsorbed on solid surfaces (physisorption and chemisorption), and the frustrated vibrational modes in adsorbates (fluid particles) is decayed by creating e −-h + pairs or phonons. These interaction rates are also calculated through ab initio calculation on fluid particle and the Fermi golden rule. [36]
Phase transition or phase change, takes place in a thermodynamic system from one phase or state of matter to another one by heat transfer. Phase change examples are the melting of ice or the boiling of water. The Mason equation explains the growth of a water droplet based on the effects of heat transport on evaporation and condensation.
Conduction is the main mode of heat transfer for solid materials because the strong inter-molecular forces allow the vibrations of particles to be easily transmitted, in comparison to liquids and gases. Liquids have weaker inter-molecular forces and more space between the particles, which makes the vibrations of particles harder to transmit.
In chemical physics, atomic diffusion is a diffusion process whereby the random, thermally-activated movement of atoms in a solid results in the net transport of atoms. For example, helium atoms inside a balloon can diffuse through the wall of the balloon and escape, resulting in the balloon slowly deflating.
Imbibition is a special type of diffusion that takes place when liquid is absorbed by solids-colloids causing an increase in volume. Water surface potential movement takes place along a concentration gradient; some dry materials absorb water. A gradient between the absorbent and the liquid is essential for imbibition.
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...