enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lens - Wikipedia

    en.wikipedia.org/wiki/Lens

    A lens with one convex and one concave side is convex-concave or meniscus. Convex-concave lenses are most commonly used in corrective lenses, since the shape minimizes some aberrations. For a biconvex or plano-convex lens in a lower-index medium, a collimated beam of light passing through the lens converges to a spot (a focus) behind

  3. Focal length - Wikipedia

    en.wikipedia.org/wiki/Focal_length

    Focal length. Measure of how strongly an optical system converges or diverges light. The focal point F and focal length f of a positive (convex) lens, a negative (concave) lens, a concave mirror, and a convex mirror. The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of ...

  4. History of photographic lens design - Wikipedia

    en.wikipedia.org/wiki/History_of_photographic...

    In 1804 William Hyde Wollaston invented a positive meniscus lens for eyeglasses. In 1812 Wollaston adapted it as a lens for the camera obscura [1]: 23–26, 307 by mounting it with the concave side facing outward with an aperture stop in front of it, making the lens reasonably sharp over a wide field.

  5. Thin lens - Wikipedia

    en.wikipedia.org/wiki/Thin_lens

    A lens may be considered a thin lens if its thickness is much less than the radii of curvature of its surfaces (d ≪ | R 1 | and d ≪ | R 2 |).. In optics, a thin lens is a lens with a thickness (distance along the optical axis between the two surfaces of the lens) that is negligible compared to the radii of curvature of the lens surfaces.

  6. Geometrical optics - Wikipedia

    en.wikipedia.org/wiki/Geometrical_optics

    Thin lenses produce focal points on either side that can be modeled using the lensmaker's equation. [5] In general, two types of lenses exist: convex lenses, which cause parallel light rays to converge, and concave lenses, which cause parallel light rays to diverge. The detailed prediction of how images are produced by these lenses can be made ...

  7. Ray transfer matrix analysis - Wikipedia

    en.wikipedia.org/wiki/Ray_transfer_matrix_analysis

    R = radius of curvature, R > 0 for concave, valid in the paraxial approximation θ is the mirror angle of incidence in the horizontal plane. Thin lens f = focal length of lens where f > 0 for convex/positive (converging) lens.

  8. Real image - Wikipedia

    en.wikipedia.org/wiki/Real_image

    Real images can be produced by concave mirrors and converging lenses, only if the object is placed further away from the mirror/lens than the focal point, and this real image is inverted. As the object approaches the focal point the image approaches infinity, and when the object passes the focal point the image becomes virtual and is not ...

  9. Vergence (optics) - Wikipedia

    en.wikipedia.org/wiki/Vergence_(optics)

    For concave lenses, the focal point is on the back side of the lens, or the output side of the focal plane, and is negative in power. A lens with no optical power is called an optical window, having flat, parallel faces. The optical power directly relates to how large positive images will be magnified, and how small negative images will be ...