enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integer overflow - Wikipedia

    en.wikipedia.org/wiki/Integer_overflow

    The register width of a processor determines the range of values that can be represented in its registers. Though the vast majority of computers can perform multiple-precision arithmetic on operands in memory, allowing numbers to be arbitrarily long and overflow to be avoided, the register width limits the sizes of numbers that can be operated on (e.g., added or subtracted) using a single ...

  3. Overflow flag - Wikipedia

    en.wikipedia.org/wiki/Overflow_flag

    The overflow flag is thus set when the most significant bit (here considered the sign bit) is changed by adding two numbers with the same sign (or subtracting two numbers with opposite signs). Overflow cannot occur when the sign of two addition operands are different (or the sign of two subtraction operands are the same). [1]

  4. Saturation arithmetic - Wikipedia

    en.wikipedia.org/wiki/Saturation_arithmetic

    Saturation arithmetic for integers has also been implemented in software for a number of programming languages including C, C++, such as the GNU Compiler Collection, [2] LLVM IR, and Eiffel. Support for saturation arithmetic is included as part of the C++26 Standard Library. This helps programmers anticipate and understand the effects of ...

  5. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    Arbitrary-precision arithmetic can also be used to avoid overflow, which is an inherent limitation of fixed-precision arithmetic. Similar to an automobile's odometer display which may change from 99999 to 00000, a fixed-precision integer may exhibit wraparound if numbers grow too large to represent at the fixed level of precision.

  6. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    In addition and subtraction, the result may require one bit more than the operands. In multiplication of two unsigned integers with m and n bits, the result may have m+n bits. In case of overflow, the high-order bits are usually lost, as the un-scaled integer gets reduced modulo 2 n where n is the size of the storage area. The sign bit, in ...

  7. Carry (arithmetic) - Wikipedia

    en.wikipedia.org/wiki/Carry_(arithmetic)

    The same carry bit is also generally used to indicate borrows in subtraction, though the bit's meaning is inverted due to the effects of two's complement arithmetic. Normally, a carry bit value of "1" signifies that an addition overflowed the ALU, and must be accounted for when adding data words of lengths greater than that of the CPU. For ...

  8. Fletcher's checksum - Wikipedia

    en.wikipedia.org/wiki/Fletcher's_checksum

    When the data word is divided into 32-bit blocks, two 32-bit sums result and are combined into a 64-bit Fletcher checksum. Usually, the second sum will be multiplied by 2 32 and added to the simple checksum, effectively stacking the sums side-by-side in a 64-bit word with the simple checksum at the least significant end. This algorithm is then ...

  9. FLAGS register - Wikipedia

    en.wikipedia.org/wiki/FLAGS_register

    The FLAGS register is the status register that contains the current state of an x86 CPU.The size and meanings of the flag bits are architecture dependent. It usually reflects the result of arithmetic operations as well as information about restrictions placed on the CPU operation at the current time.