enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dihybrid cross - Wikipedia

    en.wikipedia.org/wiki/Dihybrid_cross

    This cross results in the expected phenotypic ratio of 9:3:3:1. Another example is listed in the table below and illustrates the process of a dihybrid cross between pea plants with multiple traits and their phenotypic ratio patterns. Dihybrid crosses are easily visualized using a 4 x 4 Punnett square.

  3. Punnett square - Wikipedia

    en.wikipedia.org/wiki/Punnett_square

    The example below assesses another double-heterozygote cross using RrYy x RrYy. As stated above, the phenotypic ratio is expected to be 9:3:3:1 if crossing unlinked genes from two double-heterozygotes. The genotypic ratio was obtained in the diagram below, this diagram will have more branches than if only analyzing for phenotypic ratio.

  4. File:Dihybrid cross.svg - Wikipedia

    en.wikipedia.org/wiki/File:Dihybrid_cross.svg

    English: This diagram illustrates a dihybrid cross using a Punnett square. The traits are short tail (S), long tail (s), brown coat (B) and white coat (b).

  5. Test cross - Wikipedia

    en.wikipedia.org/wiki/Test_cross

    When conducting a dihybrid test cross, two dominant phenotypic characteristics are selected and crossed with parents displaying double recessive traits. The phenotypic characteristics of the F1 generation are then analyzed. In such a test cross, if the individual being tested is heterozygous, a phenotypic ratio of 1:1:1:1 is typically observed. [7]

  6. Genetics - Wikipedia

    en.wikipedia.org/wiki/Genetics

    One of the common diagrams used to predict the result of cross-breeding is the Punnett square. [49] When studying human genetic diseases, geneticists often use pedigree charts to represent the inheritance of traits. [50] These charts map the inheritance of a trait in a family tree.

  7. Crossover (evolutionary algorithm) - Wikipedia

    en.wikipedia.org/wiki/Crossover_(evolutionary...

    Example of a discrete recombination in the three-dimensional case. The two possible offspring lie on the corners of the cuboid marked in blue. For the crossover operators presented above and for most other crossover operators for bit strings, it holds that they can also be applied accordingly to integer or real-valued genomes whose genes each ...

  8. Hardy–Weinberg principle - Wikipedia

    en.wikipedia.org/wiki/Hardy–Weinberg_principle

    Punnett square for three-allele case (left) and four-allele case (right). White areas are homozygotes. Colored areas are heterozygotes. Consider an extra allele frequency, r. The two-allele case is the binomial expansion of (p + q) 2, and thus the three-allele case is the trinomial expansion of (p + q + r) 2.

  9. Genetic linkage - Wikipedia

    en.wikipedia.org/wiki/Genetic_linkage

    Genetic linkage is the tendency of DNA sequences that are close together on a chromosome to be inherited together during the meiosis phase of sexual reproduction.Two genetic markers that are physically near to each other are unlikely to be separated onto different chromatids during chromosomal crossover, and are therefore said to be more linked than markers that are far apart.