Search results
Results from the WOW.Com Content Network
For logistic regression, the measure of goodness-of-fit is the likelihood function L, or its logarithm, the log-likelihood ℓ. The likelihood function L is analogous to the ε 2 {\displaystyle \varepsilon ^{2}} in the linear regression case, except that the likelihood is maximized rather than minimized.
The log-likelihood function being plotted is used in the computation of the score (the gradient of the log-likelihood) and Fisher information (the curvature of the log-likelihood). Thus, the graph has a direct interpretation in the context of maximum likelihood estimation and likelihood-ratio tests.
The use of log probabilities improves numerical stability, when the probabilities are very small, because of the way in which computers approximate real numbers. [1] Simplicity. Many probability distributions have an exponential form. Taking the log of these distributions eliminates the exponential function, unwrapping the exponent.
The image to the right shows an example of a scoring rule, the logarithmic scoring rule, as a function of the probability reported for the event that actually occurred. One way to use this rule would be as a cost based on the probability that a forecaster or algorithm assigns, then checking to see which event actually occurs.
In statistics, the score (or informant [1]) is the gradient of the log-likelihood function with respect to the parameter vector. Evaluated at a particular value of the parameter vector, the score indicates the steepness of the log-likelihood function and thereby the sensitivity to infinitesimal changes to the parameter
Retrieved from "https://en.wikipedia.org/w/index.php?title=Log-likelihood_function&oldid=901713880"
The use of the log likelihood can be generalized to that of the α-log likelihood ratio. Then, the α-log likelihood ratio of the observed data can be exactly expressed as equality by using the Q-function of the α-log likelihood ratio and the α-divergence. Obtaining this Q-function is a generalized E step. Its maximization is a generalized M ...
Algorithms for implementing Maximum Likelihood estimation commonly employ Newton–Raphson iterations to solve for solution equations obtained from setting the partial derivatives of the log-likelihood functions equal to 0. Convergence criteria are used to determine when the iterations cease.