Search results
Results from the WOW.Com Content Network
The graviton must be a spin-2 boson because the source of gravitation is the stress–energy tensor, a second-order tensor (compared with electromagnetism's spin-1 photon, the source of which is the four-current, a first-order tensor). Additionally, it can be shown that any massless spin-2 field would give rise to a force indistinguishable from ...
In special relativity, just as space and time are different aspects of a more comprehensive entity called spacetime, energy and momentum are merely different aspects of a unified, four-dimensional quantity that physicists call four-momentum. In consequence, if energy is a source of gravity, momentum must be a source as well.
This is a good approximation for a photon passing a star and for a planet orbiting its sun. The motion of the lighter body (called the "particle" below) can then be determined from the Schwarzschild solution; the motion is a geodesic ("shortest path between two points") in the curved space
Le Sage's theory of gravitation is a kinetic theory of gravity originally proposed by Nicolas Fatio de Duillier in 1690 and later by Georges-Louis Le Sage in 1748. The theory proposed a mechanical explanation for Newton's gravitational force in terms of streams of tiny unseen particles (which Le Sage called ultra-mundane corpuscles) impacting all material objects from all directions.
In the framework of quantum field theory, the graviton is the name given to a hypothetical elementary particle speculated to be the force carrier that mediates gravity. However the graviton is not yet proven to exist, and no scientific model yet exists that successfully reconciles general relativity , which describes gravity, and the Standard ...
Albert Einstein predicted in 1936 that rays of light from the same direction that skirt the edges of the Sun would converge to a focal point approximately 542 AU from the Sun. [37] Thus, a probe positioned at this distance (or greater) from the Sun could use the Sun as a gravitational lens for magnifying distant objects on the opposite side of ...
The model does not explain gravitation, although physical confirmation of a theoretical particle known as a graviton would account for it to a degree. Though it addresses strong and electroweak interactions, the Standard Model does not consistently explain the canonical theory of gravitation, general relativity , in terms of quantum field theory .
In what is called the second superstring revolution, it was conjectured that both string theory and a unification of general relativity and supersymmetry known as supergravity [199] form part of a hypothesized eleven-dimensional model known as M-theory, which would constitute a uniquely defined and consistent theory of quantum gravity.