Search results
Results from the WOW.Com Content Network
In commercial applications, the alkylating agents are generally alkenes, some of the largest scale reactions practiced in industry.Such alkylations are of major industrial importance, e.g. for the production of ethylbenzene, the precursor to polystyrene, from benzene and ethylene and for the production of cumene from benzene and propene in cumene process:
Chlorobenzene (abbreviated PhCl) is an aryl chloride and the simplest of the chlorobenzenes, consisting of a benzene ring substituted with one chlorine atom. Its chemical formula is C 6 H 5 Cl. This colorless, flammable liquid is a common solvent and a widely used intermediate in the manufacture of other chemicals.
Chlorobenzenes are a group of aryl chlorides/halobenzenes consisting of one or more chlorine atoms as substituents on a benzene core. They have the formula C 6 H 6–n Cl n, where n = 1–6 is the number of chlorine atoms. Depending on the number of chlorine substituents, there may be several constitutional isomers possible. Monochlorobenzene ...
The Sandmeyer reaction provides a method through which one can perform unique transformations on benzene, such as halogenation, cyanation, trifluoromethylation, and hydroxylation. The reaction was discovered in 1884 by Swiss chemist Traugott Sandmeyer , when he attempted to synthesize phenylacetylene from benzenediazonium chloride and copper(I ...
Industrially, it is produced by the carbonylation of methylene chloride, oxidation of vinylidene chloride, or the addition of chlorine to ketene. [3] It may be prepared from chloroacetic acid and thionyl chloride, phosphorus pentachloride, or phosgene.
Addition of Cl 2 destroys the aromaticity of the benzene ring, and the addition of two more Cl 2 molecules is rapid compared to the first. Hence, only thrice-dichlorinated product can be isolated from this reaction. Radical addition: C 6 H 6 + 3Cl 2 → C 6 H 6 Cl 6. Hexachlorocyclohexane isomers with more than one chlorine atom per carbon are:
The nitration of benzene is achieved via the action of the nitronium ion as the electrophile. The sulfonation with fuming sulfuric acid gives benzenesulfonic acid. Aromatic halogenation with bromine, chlorine, or iodine gives the corresponding aryl halides. This reaction is typically catalyzed by the corresponding iron or aluminum trihalide.
The reaction mechanism for chlorination of benzene is the same as bromination of benzene. Iron(III) bromide and iron(III) chloride become inactivated if they react with water, including moisture in the air. Therefore, they are generated by adding iron filings to bromine or chlorine. Here is the mechanism of this reaction: