Search results
Results from the WOW.Com Content Network
The problem of finding the longest path or cycle that is an induced subgraph of a given hypercube graph is known as the snake-in-the-box problem. Szymanski's conjecture concerns the suitability of a hypercube as a network topology for communications.
A three-dimensional hypercube graph showing a Hamiltonian path in red, and a longest induced path in bold black. In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices which, by most definitions, are all distinct (and since the vertices are distinct, so are the edges).
An induced path of length four in a cube.Finding the longest induced path in a hypercube is known as the snake-in-the-box problem.. In the mathematical area of graph theory, an induced path in an undirected graph G is a path that is an induced subgraph of G.
In graph theory terminology, this is called finding the longest possible induced path in a hypercube; it can be viewed as a special case of the induced subgraph isomorphism problem. There is a similar problem of finding long induced cycles in hypercubes, called the coil-in-the-box problem.
In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.
The Cartesian product of two path graphs is a grid graph. The Cartesian product of n edges is a hypercube: =. Thus, the Cartesian product of two hypercube graphs is another hypercube: Q i Q j = Q i+j. The Cartesian product of two median graphs is another median graph. The graph of vertices and edges of an n-prism is the Cartesian product graph ...
Routing a permutation of the doubly-directed cube graph. In mathematics, Szymanski's conjecture, named after Ted H. Szymanski (), states that every permutation on the n-dimensional doubly directed hypercube graph can be routed with edge-disjoint paths.
In geometry, a hypercube is an n-dimensional analogue of a square (n = 2) and a cube (n = 3); the special case for n = 4 is known as a tesseract.It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length.