Search results
Results from the WOW.Com Content Network
So, if the open mapping theorem holds for ; i.e., is an open mapping, then is continuous and then is continuous (as the composition of continuous maps). For example, the above argument applies if f {\displaystyle f} is a linear operator between Banach spaces with closed graph, or if f {\displaystyle f} is a map with closed graph between compact ...
Pavel Urysohn. In topology, the Tietze extension theorem (also known as the Tietze–Urysohn–Brouwer extension theorem or Urysohn-Brouwer lemma [1]) states that any real-valued, continuous function on a closed subset of a normal topological space can be extended to the entire space, preserving boundedness if necessary.
the sinc-function becomes a continuous function on all real numbers. The term removable singularity is used in such cases when (re)defining values of a function to coincide with the appropriate limits make a function continuous at specific points. A more involved construction of continuous functions is the function composition.
Let X denote the real numbers ℝ with the usual Euclidean topology and let Y denote ℝ with the indiscrete topology (where note that Y is not Hausdorff and that every function valued in Y is continuous). Let f : X → Y be defined by f(0) = 1 and f(x) = 0 for all x ≠ 0. Then f : X → Y is continuous but its graph is not closed in X × Y. [4]
The Heine–Cantor theorem asserts that every continuous function on a compact set is uniformly continuous. In particular, if a function is continuous on a closed bounded interval of the real line, it is uniformly continuous on that interval. The Darboux integrability of continuous functions follows almost immediately from this theorem.
Every continuous function from a closed disk to itself has at least one fixed point. [6] This can be generalized to an arbitrary finite dimension: In Euclidean space Every continuous function from a closed ball of a Euclidean space into itself has a fixed point. [7] A slightly more general version is as follows: [8] Convex compact set
The sum of a differentiable function and the Weierstrass function is again continuous but nowhere differentiable; so there are at least as many such functions as differentiable functions. In fact, using the Baire category theorem, one can show that continuous functions are generically nowhere differentiable. [2]
For a Lipschitz continuous function, there exists a double cone (white) whose origin can be moved along the graph so that the whole graph always stays outside the double cone. In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions.