Search results
Results from the WOW.Com Content Network
For example, ln 7.5 is 2.0149..., because e 2.0149... = 7.5. The natural logarithm of e itself, ln e, is 1, because e 1 = e, while the natural logarithm of 1 is 0, since e 0 = 1. The natural logarithm can be defined for any positive real number a as the area under the curve y = 1/x from 1 to a [4] (with the area being negative when 0 < a < 1 ...
(), where (2n − 1)!! is the double factorial of (2n − 1), which is the product of all odd numbers up to (2n − 1). This series diverges for every finite x , and its meaning as asymptotic expansion is that for any integer N ≥ 1 one has erfc x = e − x 2 x π ∑ n = 0 N − 1 ( − 1 ) n ( 2 n − 1 ) ! !
Given two strings a and b on an alphabet Σ (e.g. the set of ASCII characters, the set of bytes [0..255], etc.), the edit distance d(a, b) is the minimum-weight series of edit operations that transforms a into b. One of the simplest sets of edit operations is that defined by Levenshtein in 1966: [2] Insertion of a single symbol.
The full formula, together with precise estimates of its error, can be derived as follows. Instead of approximating n ! {\displaystyle n!} , one considers its natural logarithm , as this is a slowly varying function : ln ( n !
The area of the blue region converges to Euler's constant. Euler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (γ), defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:
The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.
For example, in the simple equation 3 + 2y = 8y, both sides actually contain 2y (because 8y is the same as 2y + 6y). Therefore, the 2y on both sides can be cancelled out, leaving 3 = 6y, or y = 0.5. This is equivalent to subtracting 2y from both sides. At times, cancelling out can introduce limited changes or extra solutions to an equation.
A transcendental equation need not be an equation between elementary functions, although most published examples are. In some cases, a transcendental equation can be solved by transforming it into an equivalent algebraic equation. Some such transformations are sketched below; computer algebra systems may provide more elaborated transformations. [a]