Search results
Results from the WOW.Com Content Network
In mathematics, the zero ideal in a ring is the ideal {} consisting of only the additive identity (or zero element). The fact that this is an ideal follows directly from the definition. The fact that this is an ideal follows directly from the definition.
A zero element (or an absorbing/annihilating element) is an element z such that for all s in S, z • s = s • z = z. This notion can be refined to the notions of left zero , where one requires only that z • s = z , and right zero , where s • z = z .
The role of 0 as additive identity generalizes beyond elementary algebra. In abstract algebra, 0 is commonly used to denote a zero element, which is the identity element for addition (if defined on the structure under consideration) and an absorbing element for multiplication (if defined). (Such elements may also be called zero elements.)
In a vector space, the null vector is the neutral element of vector addition; depending on the context, a null vector may also be a vector mapped to some null by a function under consideration (such as a quadratic form coming with the vector space, see null vector, a linear mapping given as matrix product or dot product, [4] a seminorm in a ...
The zero ring consisting only of a single element 0 = 1 is a terminal object. In Rig, the category of rigs with unity and unity-preserving morphisms, the rig of natural numbers N is an initial object. The zero rig, which is the zero ring, consisting only of a single element 0 = 1 is a terminal object.
Every finite or countably infinite subset of the real numbers is a null set. For example, the set of natural numbers , the set of rational numbers and the set of algebraic numbers are all countably infinite and therefore are null sets when considered as subsets of the real numbers.
In mathematics, the empty set or void set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. [1] Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set , while in other theories, its existence can be deduced.
(), i.e. zero is the minimum element. The theory defined by these axioms is known as PA − . It is also incomplete and one of its important properties is that any structure M {\displaystyle M} satisfying this theory has an initial segment (ordered by ≤ {\displaystyle \leq } ) isomorphic to N {\displaystyle \mathbb {N} } .