enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zero element - Wikipedia

    en.wikipedia.org/wiki/Zero_element

    In mathematics, the zero ideal in a ring is the ideal {} consisting of only the additive identity (or zero element). The fact that this is an ideal follows directly from the definition. The fact that this is an ideal follows directly from the definition.

  3. Absorbing element - Wikipedia

    en.wikipedia.org/wiki/Absorbing_element

    A zero element (or an absorbing/annihilating element) is an element z such that for all s in S, z • s = s • z = z. This notion can be refined to the notions of left zero, where one requires only that z • s = z, and right zero, where s • z = z. [2]

  4. 0 - Wikipedia

    en.wikipedia.org/wiki/0

    The role of 0 as additive identity generalizes beyond elementary algebra. In abstract algebra, 0 is commonly used to denote a zero element, which is the identity element for addition (if defined on the structure under consideration) and an absorbing element for multiplication (if defined). (Such elements may also be called zero elements.)

  5. Initial and terminal objects - Wikipedia

    en.wikipedia.org/wiki/Initial_and_terminal_objects

    The zero ring consisting only of a single element 0 = 1 is a terminal object. In Rig, the category of rigs with unity and unity-preserving morphisms, the rig of natural numbers N is an initial object. The zero rig, which is the zero ring, consisting only of a single element 0 = 1 is a terminal object.

  6. Zero morphism - Wikipedia

    en.wikipedia.org/wiki/Zero_morphism

    The family of all morphisms so constructed endows C with the structure of a category with zero morphisms. If C is a preadditive category, then every hom-set Hom(X,Y) is an abelian group and therefore has a zero element. These zero elements form a compatible family of zero morphisms for C making it into a category with zero morphisms.

  7. Identity element - Wikipedia

    en.wikipedia.org/wiki/Identity_element

    In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. [1] [2] For example, 0 is an identity element of the addition of real numbers. This concept is used in algebraic structures such as groups and rings.

  8. Homology (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Homology_(mathematics)

    To take the homology of a chain complex, one starts with a chain complex, which is a sequence (,) of abelian groups (whose elements are called chains) and group homomorphisms (called boundary maps) such that the composition of any two consecutive maps is zero:

  9. Mathematical and theoretical biology - Wikipedia

    en.wikipedia.org/wiki/Mathematical_and...

    Mathematical and theoretical biology, or biomathematics, is a branch of biology which employs theoretical analysis, mathematical models and abstractions of living organisms to investigate the principles that govern the structure, development and behavior of the systems, as opposed to experimental biology which deals with the conduction of ...