Search results
Results from the WOW.Com Content Network
Cauchy's functional equation is the functional equation: (+) = + (). A function that solves this equation is called an additive function.Over the rational numbers, it can be shown using elementary algebra that there is a single family of solutions, namely : for any rational constant .
That is, the Cauchy–Riemann equations are the conditions for a function to be conformal. Moreover, because the composition of a conformal transformation with another conformal transformation is also conformal, the composition of a solution of the Cauchy–Riemann equations with a conformal map must itself solve the Cauchy–Riemann equations.
Thus the term functional equation is used mainly for real functions and complex functions. Moreover a smoothness condition is often assumed for the solutions, since without such a condition, most functional equations have very irregular solutions. For example, the gamma function is a function that satisfies the functional equation (+) = and the ...
Let y (n) (x) be the nth derivative of the unknown function y(x).Then a Cauchy–Euler equation of order n has the form () + () + + =. The substitution = (that is, = (); for <, in which one might replace all instances of by | |, extending the solution's domain to {}) can be used to reduce this equation to a linear differential equation with constant coefficients.
A singular solution y s (x) of an ordinary differential equation is a solution that is singular or one for which the initial value problem (also called the Cauchy problem by some authors) fails to have a unique solution at some point on the solution. The set on which a solution is singular may be as small as a single point or as large as the ...
Let be a Banach space, let ′ be the dual space of , let : ′ be a linear map, and let ′.A vector is a solution of the equation = if and only if for all , () = ().A particular choice of is called a test vector (in general) or a test function (if is a function space).
In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula.
A classical problem of Stanislaw Ulam in the theory of functional equations is the following: When is it true that a function which approximately satisfies a functional equation E must be close to an exact solution of E? In 1941, Donald H. Hyers gave a partial affirmative answer to this question in the context of Banach spaces.