Search results
Results from the WOW.Com Content Network
Definition of the Lorentz factor γ. The Lorentz factor or Lorentz term (also known as the gamma factor [1]) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in several equations in special relativity, and it arises in ...
A k-factor of a graph is a spanning k-regular subgraph, and a k-factorization partitions the edges of the graph into disjoint k-factors. A graph G is said to be k-factorable if it admits a k-factorization. In particular, a 1-factor is a perfect matching, and a 1-factorization of a k-regular graph is a proper edge coloring with k colors. A 2 ...
with a corresponding factor graph shown on the right. Observe that the factor graph has a cycle. If we merge (,) (,) into a single factor, the resulting factor graph will be a tree. This is an important distinction, as message passing algorithms are usually exact for trees, but only approximate for graphs with cycles.
Alluding to Thomas Kuhn's concept of a paradigm shift exposed in The Structure of Scientific Revolutions (1962), many "chaologists" (as some described themselves) claimed that this new theory was an example of such a shift, a thesis upheld by Gleick. The availability of cheaper, more powerful computers broadens the applicability of chaos theory.
Lorentz factor as a function of speed (in natural units where c = 1). Notice that for small speeds (as v tends to zero), γ is approximately 1. In addition to the light clock used above, the formula for time dilation can be more generally derived from the temporal part of the Lorentz transformation. [28]
The works of Ramsey on colorations and more specially the results obtained by Turán in 1941 was at the origin of another branch of graph theory, extremal graph theory. The four color problem remained unsolved for more than a century. In 1969 Heinrich Heesch published a method for solving the problem using computers. [29]
Proving that this is indeed the case is the fourteenth problem on the list of Smale's problems. This problem was the first one to be resolved, by Warwick Tucker in 2002. [25] For other values of ρ, the system displays knotted periodic orbits. For example, with ρ = 99.96 it becomes a T(3,2) torus knot.
The Lorentz factor γ retains its definition for a boost in any direction, since it depends only on the magnitude of the relative velocity. The definition β = v/c with magnitude 0 ≤ β < 1 is also used by some authors.