Search results
Results from the WOW.Com Content Network
Bioinformatics uses biology, chemistry, physics, computer science, data science, computer programming, information engineering, mathematics and statistics to analyze and interpret biological data. The process of analyzing and interpreting data can sometimes be referred to as computational biology , however this distinction between the two terms ...
While each field is distinct, there may be significant overlap at their interface, [1] so much so that to many, bioinformatics and computational biology are terms that are used interchangeably. The terms computational biology and evolutionary computation have a similar name, but are not to be confused. Unlike computational biology, evolutionary ...
Cheminformatics (also known as chemoinformatics) refers to the use of physical chemistry theory with computer and information science techniques—so called "in silico" techniques—in application to a range of descriptive and prescriptive problems in the field of chemistry, including in its applications to biology and related molecular fields.
Bioanalysis is a sub-discipline of analytical chemistry covering the quantitative measurement of xenobiotics (drugs and their metabolites, and biological molecules in unnatural locations or concentrations) and biotics (macromolecules, proteins, DNA, large molecule drugs, metabolites) in biological systems.
The concept of biological computation proposes that living organisms perform computations, and that as such, abstract ideas of information and computation may be key to understanding biology.
Whereas traditional bioinformatics is a wide subject it has a large focus on molecular biology, pharmaceutical bioinformatics more specifically targets chemical-biological interaction and exploratory focus of chemical and biological interactors using e.g. cheminformatics and chemometrics methods.
Biological data has also been difficult to define, as bioinformatics is a wide-encompassing field. Further, the question of what constitutes as being a living organism has been contentious, as "alive" represents a nebulous term that encompasses molecular evolution, biological modeling, biophysics, and systems biology.
The term structural has the same meaning as in structural biology, and structural bioinformatics can be seen as a part of computational structural biology. The main objective of structural bioinformatics is the creation of new methods of analysing and manipulating biological macromolecular data in order to solve problems in biology and generate ...