Search results
Results from the WOW.Com Content Network
An ester of a carboxylic acid. R stands for any group (typically hydrogen or organyl) and R ′ stands for any organyl group. In chemistry, an ester is a compound derived from an acid (organic or inorganic) in which the hydrogen atom (H) of at least one acidic hydroxyl group (−OH) of that acid is replaced by an organyl group (R ′). [1]
An ester of carboxylic acid. R stands for any group (organic or inorganic) and R′ stands for organyl group. In chemistry, an ester is a compound derived from an acid (organic or inorganic) in which the hydrogen atom (H) of at least one acidic hydroxyl group (−OH) of that acid is replaced by an organyl group (−R).
However, additional molecular interactions may render the amide form less stable; the amino group is expelled instead, resulting in an ester (Ser/Thr) or thioester (Cys) bond in place of the peptide bond. This chemical reaction is called an N-O acyl shift. The ester/thioester bond can be resolved in several ways:
In organic chemistry, thioesters are organosulfur compounds with the molecular structure R−C(=O)−S−R’. They are analogous to carboxylate esters (R−C(=O)−O−R’) with the sulfur in the thioester replacing oxygen in the carboxylate ester, as implied by the thio-prefix.
1071 n/a Ensembl ENSG00000087237 n/a UniProt P11597 n/a RefSeq (mRNA) NM_000078 NM_001286085 n/a RefSeq (protein) NP_000069 NP_001273014 n/a Location (UCSC) Chr 16: 56.96 – 56.98 Mb n/a PubMed search n/a Wikidata View/Edit Human Cholesteryl ester transfer protein (CETP), also called plasma lipid transfer protein, is a plasma protein that facilitates the transport of cholesteryl esters and ...
The hydrolysis of the ester bonds of triglycerides and the release of glycerol and fatty acids from adipose tissue are the initial steps in metabolizing fat. [ 31 ] : 630–1 Additional subclasses of glycerolipids are represented by glycosylglycerols, which are characterized by the presence of one or more sugar residues attached to glycerol via ...
Hydrolases can be further classified into several subclasses, based upon the bonds they act upon: EC 3.1: ester bonds (esterases: nucleases, phosphodiesterases, lipase, phosphatase) EC 3.2: sugars (DNA glycosylases, glycoside hydrolase) EC 3.3: ether bonds; EC 3.4: peptide bonds (Proteases/peptidases) EC 3.5: carbon-nitrogen bonds, other than ...
For example, while biology refers to macromolecules as the four large molecules comprising living things, in chemistry, the term may refer to aggregates of two or more molecules held together by intermolecular forces rather than covalent bonds but which do not readily dissociate.