enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arc elasticity - Wikipedia

    en.wikipedia.org/wiki/Arc_elasticity

    The y arc elasticity of x is defined as: , = % % where the percentage change in going from point 1 to point 2 is usually calculated relative to the midpoint: % = (+) /; % = (+) /. The use of the midpoint arc elasticity formula (with the midpoint used for the base of the change, rather than the initial point (x 1, y 1) which is used in almost all other contexts for calculating percentages) was ...

  3. Elasticity of a function - Wikipedia

    en.wikipedia.org/wiki/Elasticity_of_a_function

    The elasticity at a point is the limit of the arc elasticity between two points as the separation between those two points approaches zero. The concept of elasticity is widely used in economics and metabolic control analysis (MCA); see elasticity (economics) and elasticity coefficient respectively for details.

  4. Michell solution - Wikipedia

    en.wikipedia.org/wiki/Michell_solution

    In continuum mechanics, the Michell solution is a general solution to the elasticity equations in polar coordinates (,) developed by John Henry Michell in 1899. [1] The solution is such that the stress components are in the form of a Fourier series in .

  5. Castigliano's method - Wikipedia

    en.wikipedia.org/wiki/Castigliano's_method

    Castigliano's method for calculating displacements is an application of his second theorem, which states: If the strain energy of a linearly elastic structure can be expressed as a function of generalised force Q i then the partial derivative of the strain energy with respect to generalised force gives the generalised displacement q i in the direction of Q i.

  6. Flamant solution - Wikipedia

    en.wikipedia.org/wiki/Flamant_solution

    [3] [4] Let the bounded wedge have two traction free surfaces and a third surface in the form of an arc of a circle with radius . Along the arc of the circle, the unit outward normal is = where the basis vectors are (,). The tractions on the arc are

  7. Price elasticity of demand - Wikipedia

    en.wikipedia.org/wiki/Price_elasticity_of_demand

    Loosely speaking, this gives an "average" elasticity for the section of the actual demand curve—i.e., the arc of the curve—between the two points. As a result, this measure is known as the arc elasticity, in this case with respect to the price of the good. The arc elasticity is defined mathematically as: [16] [17] [18]

  8. Stress functions - Wikipedia

    en.wikipedia.org/wiki/Stress_functions

    The solution to the elastostatic problem now consists of finding the three stress functions which give a stress tensor which obeys the Beltrami-Michell compatibility equations. Substituting the expressions for the stress into the Beltrami-Michell equations yields the expression of the elastostatic problem in terms of the stress functions: [4]

  9. Kirsch equations - Wikipedia

    en.wikipedia.org/wiki/Kirsch_equations

    The Kirsch equations describe the elastic stresses around a hole in an infinite plate under one directional tension. They are named after Ernst Gustav Kirsch . Result