Search results
Results from the WOW.Com Content Network
A schematic process flow diagram of a ... surrounding a central muffle by the following chemical reaction: ... is the endothermic reaction of sulfur with H 2 S to ...
This is an accepted version of this page This is the latest accepted revision, reviewed on 1 February 2025. This article is about the chemical element. For other uses, see Sulfur (disambiguation). Chemical element with atomic number 16 (S) Sulfur, 16 S Sulfur Alternative name Sulphur (pre-1992 British spelling) Allotropes see Allotropes of sulfur Appearance Lemon yellow sintered microcrystals ...
In the gas phase, the comproportionation reaction is much faster because of the much higher mobility of the reacting species as illustrated, e.g., in the Claus reaction where H 2 S and SO 2 react together to form elemental sulfur. Various classical comproportionation reactions are detailed in the series of examples here below.
The important sulfur cycle is a biogeochemical cycle in which the sulfur moves between rocks, waterways and living systems. It is important in geology as it affects many minerals and in life because sulfur is an essential element (), being a constituent of many proteins and cofactors, and sulfur compounds can be used as oxidants or reductants in microbial respiration. [1]
Simplified diagram of the Hybrid sulfur cycle. The hybrid sulfur cycle (HyS) is a two-step water-splitting process intended to be used for hydrogen production.Based on sulfur oxidation and reduction, it is classified as a hybrid thermochemical cycle because it uses an electrochemical (instead of a thermochemical) reaction for one of the two steps.
In the most common type of industrial "curing" or hardening and strengthening of natural rubber, elemental sulfur is heated with the rubber to the point that chemical reactions form disulfide bridges between isoprene units of the polymer. This process, patented in 1843, made rubber a major industrial product, especially in automobile tires.
In metallurgy, the Ellingham diagram is used to predict the equilibrium temperature between a metal, its oxide, and oxygen — and by extension, reactions of a metal with sulfur, nitrogen, and other non-metals. The diagrams are useful in predicting the conditions under which an ore will be reduced to its metal.
Sulfur can also serve as both an electron donor and electron acceptor by microorganisms is disproportionation reactions. For example, Acidianus ambivalens uses sulfur oxygenase reductase (SOR) to convert elemental sulfur to sulfate, thiosulfate, and hydrogen sulfide through disproportionation. [ 16 ]