Search results
Results from the WOW.Com Content Network
An Einstein Ring is a special case of gravitational lensing, caused by the exact alignment of the source, lens, and observer. This results in symmetry around the lens, causing a ring-like structure. [2] The geometry of a complete Einstein ring, as caused by a gravitational lens. The size of an Einstein ring is given by the Einstein radius.
Albert Einstein. Relativity: the Special and the General Theory, 10th edition (there are a total of 17 editions). ISBN 0-517-029618 at Project Gutenberg; Relativity: The Special and General Theory public domain audiobook at LibriVox; Albert Einstein, Relativity: The Special and General Theory (1920/2000) ISBN 1-58734-092-5 at Bartleby.com
For a source right behind the lens, θ S = 0, the lens equation for a point mass gives a characteristic value for θ 1 that is called the Einstein angle, denoted θ E. When θ E is expressed in radians, and the lensing source is sufficiently far away, the Einstein Radius , denoted R E , is given by
Although Einstein made unpublished calculations on the subject, [9] the first discussion of the gravitational lens in print was by Khvolson, in a short article discussing the "halo effect" of gravitation when the source, lens, and observer are in near-perfect alignment, [7] now referred to as the Einstein ring.
Einstein's paper includes a fundamental description of the kinematics of the rigid body, and it did not require an absolutely stationary space, such as the aether. Einstein identified two fundamental principles, the principle of relativity and the principle of the constancy of light (light principle), which served as the axiomatic basis of his ...
A new photograph from the Hubble Space Telescope shows a stunning “Einstein Ring” billions of light-years from Earth — a phenomenon named after Albert Einstein.
Einstein explained his goal in the preface of the book's German edition by stating he "wanted to summarize the principal thoughts and mathematical methods of relativity theory" and that his "principal aim was to let the fundamentals in the entire train of thought of the theory emerge clearly".
1. First postulate (principle of relativity) The laws of physics take the same form in all inertial frames of reference.. 2. Second postulate (invariance of c) . As measured in any inertial frame of reference, light is always propagated in empty space with a definite velocity c that is independent of the state of motion of the emitting body.