Search results
Results from the WOW.Com Content Network
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
Boltzmann's equation—carved on his gravestone. [1]In statistical mechanics, Boltzmann's equation (also known as the Boltzmann–Planck equation) is a probability equation relating the entropy, also written as , of an ideal gas to the multiplicity (commonly denoted as or ), the number of real microstates corresponding to the gas's macrostate:
where is the amount of energy the system gains by heating, is the temperature of the surroundings, and is the change in entropy. The equal sign refers to a reversible process , which is an imagined idealized theoretical limit, never actually occurring in physical reality, with essentially equal temperatures of system and surroundings.
Ideal gas equations Physical situation Nomenclature Equations Ideal gas law: p = pressure; V = volume of container; T = temperature; ... Entropy change
The ideal gas law is the equation of state for an ideal gas, given by: = where P is the pressure; V is the volume; n is the amount of substance of the gas (in moles) T is the absolute temperature; R is the gas constant, which must be expressed in units consistent with those chosen for pressure, volume and temperature.
The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system. However, the second law of thermodynamics is not a defining relation for the entropy.
The Sackur–Tetrode equation is an expression for the entropy of a monatomic ideal gas. [ 1 ] It is named for Hugo Martin Tetrode [ 2 ] (1895–1931) and Otto Sackur [ 3 ] (1880–1914), who developed it independently as a solution of Boltzmann's gas statistics and entropy equations, at about the same time in 1912.
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".