enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  3. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Ideal gas equations Physical situation Nomenclature Equations Ideal gas law: p = pressure; V = volume of container; T = temperature; ... Entropy change

  4. Polytropic process - Wikipedia

    en.wikipedia.org/wiki/Polytropic_process

    Under the assumption of ideal gas law, heat and work flows go in the same direction (K < 0), such as in an internal combustion engine during the power stroke, where heat is lost from the hot combustion products, through the cylinder walls, to the cooler surroundings, at the same time as those hot combustion products push on the piston.

  5. Boltzmann's entropy formula - Wikipedia

    en.wikipedia.org/wiki/Boltzmann's_entropy_formula

    Boltzmann's equation—carved on his gravestone. [1]In statistical mechanics, Boltzmann's equation (also known as the Boltzmann–Planck equation) is a probability equation relating the entropy, also written as , of an ideal gas to the multiplicity (commonly denoted as or ), the number of real microstates corresponding to the gas's macrostate:

  6. Ideal gas - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas

    The ideal gas law is the equation of state for an ideal gas, given by: = where P is the pressure; V is the volume; n is the amount of substance of the gas (in moles) T is the absolute temperature; R is the gas constant, which must be expressed in units consistent with those chosen for pressure, volume and temperature.

  7. Sackur–Tetrode equation - Wikipedia

    en.wikipedia.org/wiki/Sackur–Tetrode_equation

    The Sackur–Tetrode equation is an expression for the entropy of a monatomic ideal gas. [ 1 ] It is named for Hugo Martin Tetrode [ 2 ] (1895–1931) and Otto Sackur [ 3 ] (1880–1914), who developed it independently as a solution of Boltzmann's gas statistics and entropy equations, at about the same time in 1912.

  8. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".

  9. Entropy (classical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(classical...

    In the case of an ideal gas, the heat capacity is constant and the ideal gas law PV = nRT gives that α V V = V/T = nR/p, with n the number of moles and R the molar ideal-gas constant. So, the molar entropy of an ideal gas is given by (,) = (,) + ⁡ ⁡. In this expression C P now is the molar heat capacity. The entropy of inhomogeneous ...