enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Unordered pair - Wikipedia

    en.wikipedia.org/wiki/Unordered_pair

    In mathematics, an unordered pair or pair set is a set of the form {a, b}, i.e. a set having two elements a and b with no particular relation between them, where {a, b} = {b, a}. In contrast, an ordered pair ( a , b ) has a as its first element and b as its second element, which means ( a , b ) ≠ ( b , a ).

  3. Kripke–Platek set theory - Wikipedia

    en.wikipedia.org/wiki/Kripke–Platek_set_theory

    Theorem: If A and B are sets, then there is a set A×B which consists of all ordered pairs (a, b) of elements a of A and b of B. Proof: The singleton set with member a, written {a}, is the same as the unordered pair {a, a}, by the axiom of extensionality. The singleton, the set {a, b}, and then also the ordered pair

  4. Axiom of pairing - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_pairing

    The axiom of pairing is generally considered uncontroversial, and it or an equivalent appears in just about any axiomatization of set theory. Nevertheless, in the standard formulation of the Zermelo–Fraenkel set theory, the axiom of pairing follows from the axiom schema of replacement applied to any given set with two or more elements, and thus it is sometimes omitted.

  5. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects.Although objects of any kind can be collected into a set, set theory — as a branch of mathematics — is mostly concerned with those that are relevant to mathematics as a whole.

  6. Tarski–Grothendieck set theory - Wikipedia

    en.wikipedia.org/wiki/Tarski–Grothendieck_set...

    Tarski–Grothendieck set theory (TG, named after mathematicians Alfred Tarski and Alexander Grothendieck) is an axiomatic set theory.It is a non-conservative extension of Zermelo–Fraenkel set theory (ZFC) and is distinguished from other axiomatic set theories by the inclusion of Tarski's axiom, which states that for each set there is a "Tarski universe" it belongs to (see below).

  7. List of order structures in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_order_structures...

    Lattices, partial orders in which each pair of elements has a greatest lower bound and a least upper bound. Many different types of lattice have been studied; see map of lattices for a list. Partially ordered sets (or posets), orderings in which some pairs are comparable and others might not be

  8. Pair - Wikipedia

    en.wikipedia.org/wiki/Pair

    Mathematics. 2 (number), two of something, a pair; Unordered pair, or pair set, in mathematics and set theory; Ordered pair, or 2-tuple, in mathematics and set theory; Pairing, in mathematics, an R-bilinear map of modules, where R is the underlying ring; Pair type, in programming languages and type theory, a product type with two component types

  9. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).