enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Newton's first law expresses the principle of inertia: the natural behavior of a body is to move in a straight line at constant speed. A body's motion preserves the status quo, but external forces can perturb this. The modern understanding of Newton's first law is that no inertial observer is privileged over any other. The concept of an ...

  3. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    One might then try to invoke Newton's second law of motion by saying that the external force F on the object is related to its momentum p(t) by F = ⁠ dp / dt ⁠, but this is incorrect, as is the related expression found by applying the product rule to ⁠ d(mv) / dt ⁠: [17]

  4. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    Newton's Third Law is a result of applying symmetry to situations where forces can be attributed to the presence of different objects. The third law means that all forces are interactions between different bodies. [18] [19] and thus that there is no such thing as a unidirectional force or a force that acts on only one body.

  5. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    The trivial case of the angular momentum of a body in an orbit is given by = where is the mass of the orbiting object, is the orbit's frequency and is the orbit's radius.. The angular momentum of a uniform rigid sphere rotating around its axis, instead, is given by = where is the sphere's mass, is the frequency of rotation and is the sphere's radius.

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  7. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    and the cross-product is a pseudovector i.e. if r and p are reversed in direction (negative), L is not. In general I is an order-2 tensor, see above for its components. The dot · indicates tensor contraction. Force and Newton's 2nd law: Resultant force acts on a system at the center of mass, equal to the rate of change of momentum:

  8. Centrifugal force - Wikipedia

    en.wikipedia.org/wiki/Centrifugal_force

    These fictitious forces are necessary for the formulation of correct equations of motion in a rotating reference frame [15] [16] and allow Newton's laws to be used in their normal form in such a frame (with one exception: the fictitious forces do not obey Newton's third law: they have no equal and opposite counterparts). [15]

  9. Vis viva - Wikipedia

    en.wikipedia.org/wiki/Vis_viva

    Newton’s Third Law of Motion (for every action there is an equal and opposite reaction) is also equivalent to the principle of conservation of momentum. Leibniz accepted the principle of conservation of momentum, but rejected the Cartesian version of it. [ 2 ]