enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nucleic acid tertiary structure - Wikipedia

    en.wikipedia.org/.../Nucleic_acid_tertiary_structure

    There are diverse structures of RNA base quadruplexes. Four consecutive guanine residues can form a quadruplex in RNA by Hoogsteen hydrogen bonds to form a “Hoogsteen ring” (See Figure). [12] G-C and A-U pairs can also form base quadruplex with a combination of Watson-Crick pairing and noncanonical pairing in the minor groove. [17]

  3. Base pair - Wikipedia

    en.wikipedia.org/wiki/Base_pair

    The chemical structure of DNA base-pairs . A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA and RNA.

  4. Wobble base pair - Wikipedia

    en.wikipedia.org/wiki/Wobble_base_pair

    Wobble base pairs for inosine and guanine. A wobble base pair is a pairing between two nucleotides in RNA molecules that does not follow Watson-Crick base pair rules. [1] The four main wobble base pairs are guanine-uracil (G-U), hypoxanthine-uracil (I-U), hypoxanthine-adenine (I-A), and hypoxanthine-cytosine (I-C).

  5. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    A tetraloop is a four-base pairs hairpin RNA structure. There are three common families of tetraloop in ribosomal RNA: UNCG, GNRA, and CUUG (N is one of the four nucleotides and R is a purine). UNCG is the most stable tetraloop. [9] Pseudoknot is an RNA secondary structure first identified in turnip yellow mosaic virus. [10] It is minimally ...

  6. RNA - Wikipedia

    en.wikipedia.org/wiki/RNA

    Watson-Crick base pairs in a siRNA. Hydrogen atoms are not shown. Each nucleotide in RNA contains a ribose sugar, with carbons numbered 1' through 5'. A base is attached to the 1' position, in general, adenine (A), cytosine (C), guanine (G), or uracil (U). Adenine and guanine are purines, and cytosine and uracil are pyrimidines.

  7. Nucleic acid secondary structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_secondary...

    Nucleic acid secondary structure is generally divided into helices (contiguous base pairs), and various kinds of loops (unpaired nucleotides surrounded by helices). Frequently these elements, or combinations of them, are further classified into additional categories including, for example, tetraloops , pseudoknots , and stem-loops .

  8. Stem-loop - Wikipedia

    en.wikipedia.org/wiki/Stem-loop

    In RNA, adenine-uracil pairings featuring two hydrogen bonds are equal to the adenine-thymine bond of DNA. Base stacking interactions, which align the pi bonds of the bases' aromatic rings in a favorable orientation, also promote helix formation. The stability of the loop also influences the formation of the stem-loop structure.

  9. Hoogsteen base pair - Wikipedia

    en.wikipedia.org/wiki/Hoogsteen_base_pair

    Chemical structures for Watson–Crick and Hoogsteen A•T and G•C+ base pairs. The Hoogsteen geometry can be achieved by purine rotation around the glycosidic bond (χ) and base-flipping (θ), affecting simultaneously C8 and C1 ′ (yellow). [1] A Hoogsteen base pair is a variation of base-pairing in nucleic acids such as the A