enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Impedance parameters - Wikipedia

    en.wikipedia.org/wiki/Impedance_parameters

    Z-parameters are also known as open-circuit impedance parameters as they are calculated under open circuit conditions. i.e., I x =0, where x=1,2 refer to input and output currents flowing through the ports (of a two-port network in this case) respectively.

  3. Scattering parameters - Wikipedia

    en.wikipedia.org/wiki/Scattering_parameters

    Any 2-port S-parameter may be displayed on a Smith chart using polar co-ordinates, but the most meaningful would be and since either of these may be converted directly into an equivalent normalized impedance (or admittance) using the characteristic Smith Chart impedance (or admittance) scaling appropriate to the system impedance.

  4. Characteristic impedance - Wikipedia

    en.wikipedia.org/wiki/Characteristic_impedance

    The input impedance of an infinite line is equal to the characteristic impedance since the transmitted wave is never reflected back from the end. Equivalently: The characteristic impedance of a line is that impedance which, when terminating an arbitrary length of line at its output, produces an input impedance of equal value. This is so because ...

  5. Electrical impedance - Wikipedia

    en.wikipedia.org/wiki/Electrical_impedance

    In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]

  6. Per-unit system - Wikipedia

    en.wikipedia.org/wiki/Per-unit_system

    Hence, it is appropriate to illustrate the steps for finding per-unit values for voltage and impedance. First, let the base power (S base) of each end of a transformer become the same. Once every S is set on the same base, the base voltage and base impedance for every transformer can easily be obtained. Then, the real numbers of impedances and ...

  7. Equivalent impedance transforms - Wikipedia

    en.wikipedia.org/wiki/Equivalent_impedance...

    Equivalent unbalanced and balanced networks. The impedance of the series elements in the balanced version is half the corresponding impedance of the unbalanced version. Fig. 3. To be balanced, a network must have the same impedance in each "leg" of the circuit. A 3-terminal network can also be used as a 2-port.

  8. Admittance parameters - Wikipedia

    en.wikipedia.org/wiki/Admittance_parameters

    Admittance parameters or Y-parameters (the elements of an admittance matrix or Y-matrix) are properties used in many areas of electrical engineering, such as power, electronics, and telecommunications. These parameters are used to describe the electrical behavior of linear electrical networks.

  9. Reflection coefficient - Wikipedia

    en.wikipedia.org/wiki/Reflection_coefficient

    In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.