Search results
Results from the WOW.Com Content Network
Bacterial recombination is a type of genetic recombination in bacteria characterized by DNA transfer from one organism called donor to another organism as recipient. This process occurs in three main ways:
Some DNA viruses encode a recombinase that facilitates homologous recombination. A well-studied example is the UvsX recombinase encoded by bacteriophage T4. [10] UvsX is homologous to bacterial RecA. UvsX, like RecA, can facilitate the assimilation of linear single-stranded DNA into an homologous DNA duplex to produce a D-loop.
In this case the recombination sites are slightly asymmetric, which allows the enzyme to tell apart the left and right ends of the site. When generating products, left ends are always joined to the right ends of their partner sites, and vice versa. This causes different recombination hybrid sites to be reconstituted in the recombination products.
The RecBCD pathway is the main recombination pathway used in many bacteria to repair double-strand breaks in DNA, and the proteins are found in a broad array of bacteria. [ 63 ] [ 64 ] [ 65 ] These double-strand breaks can be caused by UV light and other radiation , as well as chemical mutagens .
Genetic recombination and recombinational DNA repair also occurs in bacteria and archaea, which use asexual reproduction. Recombination can be artificially induced in laboratory (in vitro) settings, producing recombinant DNA for purposes including vaccine development.
DNA expression requires the transfection of suitable host cells. Typically, either bacterial, yeast, insect, or mammalian cells (such as Human Embryonic Kidney cells or CHO cells) are used as host cells. [8] Following transplantation into the host organism, the foreign DNA contained within the recombinant DNA construct may or may not be expressed.
Bacterial conjugation has been extensively studied in Escherichia coli, but also occurs in other bacteria such as Mycobacterium smegmatis. Conjugation requires stable and extended contact between a donor and a recipient strain, is DNase resistant, and the transferred DNA is incorporated into the recipient chromosome by homologous recombination.
Recombineering (recombination-mediated genetic engineering) [1] is a genetic and molecular biology technique based on homologous recombination systems, as opposed to the older/more common method of using restriction enzymes and ligases to combine DNA sequences in a specified order.