enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    Additionally, the relationship between energy and information formulated by Brillouin has been proposed as a connection between the amount of bits that the brain processes and the energy it consumes: Collell and Fauquet [12] argued that De Castro [13] analytically found the Landauer limit as the thermodynamic lower bound for brain computations ...

  3. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The information gain in decision trees (,), which is equal to the difference between the entropy of and the conditional entropy of given , quantifies the expected information, or the reduction in entropy, from additionally knowing the value of an attribute . The information gain is used to identify which attributes of the dataset provide the ...

  4. Information diagram - Wikipedia

    en.wikipedia.org/wiki/Information_diagram

    An information diagram is a type of Venn diagram used in information theory to illustrate relationships among Shannon's basic measures of information: entropy, joint entropy, conditional entropy and mutual information. [1] [2] Information

  5. Information theory - Wikipedia

    en.wikipedia.org/wiki/Information_theory

    In this context, either an information-theoretical measure, such as functional clusters (Gerald Edelman and Giulio Tononi's functional clustering model and dynamic core hypothesis (DCH) [47]) or effective information (Tononi's integrated information theory (IIT) of consciousness [48] [49] [50]), is defined (on the basis of a reentrant process ...

  6. Entropy as an arrow of time - Wikipedia

    en.wikipedia.org/wiki/Entropy_as_an_arrow_of_time

    To do this, one must acknowledge the difference between the measured entropy of a system—which depends only on its macrostate (its volume, temperature etc.)—and its information entropy, [6] which is the amount of information (number of computer bits) needed to describe the exact microstate of the system.

  7. Mutual information - Wikipedia

    en.wikipedia.org/wiki/Mutual_information

    The mutual information is used to learn the structure of Bayesian networks/dynamic Bayesian networks, which is thought to explain the causal relationship between random variables, as exemplified by the GlobalMIT toolkit: [37] learning the globally optimal dynamic Bayesian network with the Mutual Information Test criterion.

  8. Redundancy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Redundancy_(information...

    Redundancy of compressed data refers to the difference between the expected compressed data length of messages () (or expected data rate () /) and the entropy (or entropy rate ). (Here we assume the data is ergodic and stationary , e.g., a memoryless source.)

  9. Introduction to entropy - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_entropy

    The connection between thermodynamic entropy and information entropy is given by Boltzmann's equation, which says that S = k B ln W. If we take the base-2 logarithm of W, it will yield the average number of questions we must ask about the microstate of the physical system in order to determine its macrostate. [13]