Search results
Results from the WOW.Com Content Network
The task of additional reactive power compensation (also known as voltage compensation) is assigned to compensating devices: [7] passive (either permanently connected or switched) sinks of reactive power (e.g., shunt reactors that are similar to transformers in construction, with a single winding and iron core [ 9 ] ).
In Electrical Engineering, a static VAR compensator (SVC) is a set of electrical devices for providing fast-acting reactive power on high-voltage electricity transmission networks. [1] [2] SVCs are part of the flexible AC transmission system [3] [4] device family, regulating voltage, power factor, harmonics and stabilizing the system. A static ...
This feature can provide controllable voltage compensation. [2] In addition, SSSC is able to reverse the power flow by injecting a sufficiently large series reactive compensating voltage. [2] The SSSC consists of a voltage source converter (VSC) connected in series with the transmission line through a transformer.
In Electrical Engineering , a static synchronous compensator (STATCOM) is a shunt-connected, reactive compensation device used on transmission networks. It uses power electronics to form a voltage-source converter that can act as either a source or sink of reactive AC power to an electricity network.
A thyristor-switched capacitor (TSC) is a type of equipment used for compensating reactive power in electrical power systems. It consists of a power capacitor connected in series with a bidirectional thyristor valve and, usually, a current limiting reactor ( inductor ).
In other words, the DVR is a solid state DC to AC switching power converter that injects a set of three-phase AC output voltages in series and synchronicity with the distribution and transmission line voltages. The source of the injected voltage is the commutation process for reactive power demand and an energy source for the real power demand.
Heavily loaded lines consumed reactive power due to the line's inductance, and as transmission voltage increased throughout the 20th century, the higher voltage supplied capacitive reactive power. As operating a transmission line only at it surge impedance loading (SIL) was not feasible, [2] other means to manage the reactive power was needed.
On light loads, the power drawn by induction motors has a large reactive component and the power factor has a low value. The added current flowing to supply reactive power creates additional losses in the power system. In an industrial plant, synchronous motors can be used to supply some of the reactive power required by induction motors.