enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    The ancient Greek understanding of physics was limited to the statics of simple machines (the balance of forces), and did not include dynamics or the concept of work. During the Renaissance the dynamics of the Mechanical Powers, as the simple machines were called, began to be studied from the standpoint of how far they could lift a load, in addition to the force they could apply, leading ...

  3. Work (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Work_(thermodynamics)

    Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.

  4. Work (electric field) - Wikipedia

    en.wikipedia.org/wiki/Work_(electric_field)

    The work can be done, for example, by electrochemical devices (electrochemical cells) or different metals junctions [clarification needed] generating an electromotive force. Electric field work is formally equivalent to work by other force fields in physics, [ 1 ] and the formalism for electrical work is identical to that of mechanical work.

  5. Isobaric process - Wikipedia

    en.wikipedia.org/wiki/Isobaric_process

    This article uses the physics sign convention for work, where positive work is work done by the system. Using this convention, by the first law of thermodynamics, The yellow area represents the work done = + where W is work, U is internal energy, and Q is heat. [1] Pressure-volume work by the closed system is defined as:

  6. First law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/First_law_of_thermodynamics

    That axiom stated that the internal energy of a phase in equilibrium is a function of state, that the sum of the internal energies of the phases is the total internal energy of the system, and that the value of the total internal energy of the system is changed by the amount of work done adiabatically on it, considering work as a form of energy.

  7. Joule - Wikipedia

    en.wikipedia.org/wiki/Joule

    The joule (/ dʒ uː l / JOOL, or / dʒ aʊ l / JOWL; symbol: J) is the unit of energy in the International System of Units (SI). [1] It is equal to the amount of work done when a force of one newton displaces a mass through a distance of one metre in the direction of that force.

  8. Erg - Wikipedia

    en.wikipedia.org/wiki/Erg

    Its name is derived from ergon (ἔργον), a Greek word meaning 'work' or 'task'. [1] An erg is the amount of work done by a force of one dyne exerted for a distance of one centimetre. In the CGS base units, it is equal to one gram centimetre-squared per second-squared (g⋅cm 2 /s 2). It is thus equal to 10 −7 joules or 100 nanojoules in ...

  9. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    One of the fundamental thermodynamic equations is the description of thermodynamic work in analogy to mechanical work, or weight lifted through an elevation against gravity, as defined in 1824 by French physicist Sadi Carnot. Carnot used the phrase motive power for work.