Search results
Results from the WOW.Com Content Network
A scalar is an element of a field which is used to define a vector space.In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector.
In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry , the dot product of the Cartesian coordinates of two vectors is widely used.
The term vector was coined by W. R. Hamilton around 1843, as he revealed quaternions, a system which uses vectors and scalars to span a four-dimensional space. For a quaternion q = a + bi + cj + dk, Hamilton used two projections: S q = a, for the scalar part of q, and V q = bi + cj + dk, the vector part.
In mathematics, the scalar projection of a vector on (or onto) a vector , also known as the scalar resolute of in the direction of , is given by ...
Mathematically, a scalar field on a region U is a real or complex-valued function or distribution on U. [1] [2] The region U may be a set in some Euclidean space, Minkowski space, or more generally a subset of a manifold, and it is typical in mathematics to impose further conditions on the field, such that it be continuous or often continuously differentiable to some order.
A quaternion of the form a + 0 i + 0 j + 0 k, where a is a real number, is called scalar, and a quaternion of the form 0 + b i + c j + d k, where b, c, and d are real numbers, and at least one of b, c, or d is nonzero, is called a vector quaternion. If a + b i + c j + d k is any quaternion, then a is called its scalar part and b i + c j + d k ...
For the complex number +, a is called the real part, and b is called the imaginary part. The set of complex numbers is denoted by either of the symbols C {\displaystyle \mathbb {C} } or C . Despite the historical nomenclature, "imaginary" complex numbers have a mathematical existence as firm as that of the real numbers, and they are fundamental ...
Let V be a vector space of dimension n over a field F (with n≥2), and let Hom(V,V) denote the linear transformations on V.An n-trace diagram is a graph = (,), where the sets V i (i = 1, 2, n) are composed of vertices of degree i, together with the following additional structures: