Search results
Results from the WOW.Com Content Network
A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known.
In statistics, a Gaussian random field (GRF) is a random field involving Gaussian probability density functions of the variables. A one-dimensional GRF is also called a Gaussian process . An important special case of a GRF is the Gaussian free field .
[1] [2] In other words, () is the probability that a normal (Gaussian) random variable will obtain a value larger than standard deviations. Equivalently, () is the probability that a standard normal random variable takes a value larger than .
The random variable (Y/σ) 2 has a noncentral chi-squared distribution with 1 degree of freedom and noncentrality equal to (μ/σ) 2. The folded normal distribution can also be seen as the limit of the folded non-standardized t distribution as the degrees of freedom go to infinity.
In mathematical notation, these facts can be expressed as follows, where Pr() is the probability function, [1] Χ is an observation from a normally distributed random variable, μ (mu) is the mean of the distribution, and σ (sigma) is its standard deviation: (+) % (+) % (+) %
To obtain the marginal distribution over a subset of multivariate normal random variables, one only needs to drop the irrelevant variables (the variables that one wants to marginalize out) from the mean vector and the covariance matrix. The proof for this follows from the definitions of multivariate normal distributions and linear algebra.
In probability theory particularly in the Malliavin calculus, a Gaussian probability space is a probability space together with a Hilbert space of mean zero, real-valued Gaussian random variables. Important examples include the classical or abstract Wiener space with some suitable collection of Gaussian random variables.
A simple answer is to sample the continuous Gaussian, yielding the sampled Gaussian kernel. However, this discrete function does not have the discrete analogs of the properties of the continuous function, and can lead to undesired effects, as described in the article scale space implementation .