Search results
Results from the WOW.Com Content Network
The correlation coefficient is +1 in the case of a perfect direct (increasing) linear relationship (correlation), −1 in the case of a perfect inverse (decreasing) linear relationship (anti-correlation), [5] and some value in the open interval (,) in all other cases, indicating the degree of linear dependence between the variables. As it ...
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
A correlation coefficient is a numerical measure of some type of linear correlation, meaning a statistical relationship between two variables. [ a ] The variables may be two columns of a given data set of observations, often called a sample , or two components of a multivariate random variable with a known distribution .
The Spearman correlation coefficient is often described as being "nonparametric". This can have two meanings. First, a perfect Spearman correlation results when X and Y are related by any monotonic function. Contrast this with the Pearson correlation, which only gives a perfect value when X and Y are related by a linear function.
The value –1 conveys a perfect negative correlation controlling for some variables (that is, an exact linear relationship in which higher values of one variable are associated with lower values of the other); the value 1 conveys a perfect positive linear relationship, and the value 0 conveys that there is no linear relationship.
Allee effects are classified by the nature of density dependence at low densities. If the population shrinks for low densities, there is a strong Allee effect. If the proliferation rate is positive and increasing then there is a weak Allee effect. The null hypothesis is that proliferation rates are positive but decreasing at low densities.
Diametrically opposed points represent a correlation of –1 = cos(π), called anti-correlation. Any two points not in the same hemisphere have negative correlation. An example would be a negative cross-sectional relationship between illness and vaccination, if it is observed that where the incidence of one is higher than average, the incidence ...
The correlation coefficient ρ, expressed as an autocorrelation function or cross-correlation function, depends on the lag-time between the times being considered.Typically such functions, ρ(t), decay to zero with increasing lag-time, but they can assume values across all levels of correlations: strong and weak, and positive and negative as in the table.