Search results
Results from the WOW.Com Content Network
Prim's algorithm. In computer science, Prim's algorithm is a greedy algorithm that finds a minimum spanning tree for a weighted undirected graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized. The algorithm operates by building this tree ...
A planar graph and its minimum spanning tree. Each edge is labeled with its weight, which here is roughly proportional to its length. A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. [1]
The distributed minimum spanning tree (MST) problem involves the construction of a minimum spanning tree by a distributed algorithm, in a network where nodes communicate by message passing. It is radically different from the classical sequential problem, although the most basic approach resembles Borůvka's algorithm.
Parallel algorithms for minimum spanning trees. In graph theory a minimum spanning tree (MST) of a graph with and is a tree subgraph of that contains all of its vertices and is of minimum weight. MSTs are useful and versatile tools utilised in a wide variety of practical and theoretical fields. For example, a company looking to supply multiple ...
For points in any dimension, the minimum spanning tree can be constructed in time () by constructing a complete graph with an edge between every pair of points, weighted by Euclidean distance, and then applying a graph minimum spanning tree algorithm such as the Prim–Dijkstra–Jarník algorithm or Borůvka's algorithm on it.
The key insight to the algorithm is a random sampling step which partitions a graph into two subgraphs by randomly selecting edges to include in each subgraph. The algorithm recursively finds the minimum spanning forest of the first subproblem and uses the solution in conjunction with a linear time verification algorithm to discard edges in the graph that cannot be in the minimum spanning tree.
Note that simply running classical Prim's on a graph with random edge weights would create mazes stylistically identical to Kruskal's, because they are both minimal spanning tree algorithms. Instead, this algorithm introduces stylistic variation because the edges closer to the starting point have a lower effective weight.
By explicitly constructing the complete graph on n vertices, which has n(n-1)/2 edges, a rectilinear minimum spanning tree can be found using existing algorithms for finding a minimum spanning tree. In particular, using Prim's algorithm with an adjacency matrix yields time complexity O(n 2).