Search results
Results from the WOW.Com Content Network
Calculus. In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. [1][2][3] Let , where both f and g are differentiable and The quotient rule states that the derivative of h(x) is. {\displaystyle h' (x)= {\frac {f' (x)g (x)-f (x)g' (x)} { (g (x))^ {2}}}.} It is ...
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
Ratio. In mathematics, a ratio (/ ˈreɪʃ (i) oʊ /) shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ratio 4:3). Similarly, the ratio of lemons to oranges is 6:8 (or 3:4) and ...
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.
Identity 1: The following two results follow from this and the ratio identities. To obtain the first, divide both sides of by ; for the second, divide by . Similarly. Identity 2: The following accounts for all three reciprocal functions. Proof 2: Refer to the triangle diagram above. Note that by Pythagorean theorem.
Quadratic equation. In mathematics, a quadratic equation (from Latin quadratus ' square ') is an equation that can be rearranged in standard form as [1] where x represents an unknown value, and a, b, and c represent known numbers, where a ≠ 0. (If a = 0 and b ≠ 0 then the equation is linear, not quadratic.)
The silver ratio is a Pisot–Vijayaraghavan number (PV number), as its conjugate 1 − √ 2 = −1 δS ≈ −0.41421 has absolute value less than 1. In fact it is the second smallest quadratic PV number after the golden ratio. This means the distance from δ n. S to the nearest integer is 1 δ n.
Quadrant 3 (angles from 180 to 270 degrees, or π to 3π/2 radians): T angent and cotangent functions are positive in this quadrant. Quadrant 4 (angles from 270 to 360 degrees, or 3π/2 to 2π radians): C osine and secant functions are positive in this quadrant. Other mnemonics include: All S tations T o C entral [6]