Search results
Results from the WOW.Com Content Network
Gaussian function. In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form and with parametric extension for arbitrary real constants a, b and non-zero c. It is named after the mathematician Carl Friedrich Gauss.
Curve of constant width. Measuring the width of a Reuleaux triangle as the distance between parallel supporting lines. Because this distance does not depend on the direction of the lines, the Reuleaux triangle is a curve of constant width. In geometry, a curve of constant width is a simple closed curve in the plane whose width (the distance ...
The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution. This is a special case when and , and it is described by this probability density function (or density): The variable has a mean of 0 and a variance and standard deviation of 1.
An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations. Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.
Full width at half maximum. In a distribution, full width at half maximum (FWHM) is the difference between the two values of the independent variable at which the dependent variable is equal to half of its maximum value. In other words, it is the width of a spectrum curve measured between those points on the y -axis which are half the maximum ...
A Reuleaux triangle [ʁœlo] is a curved triangle with constant width, the simplest and best known curve of constant width other than the circle. [1] It is formed from the intersection of three circular disks, each having its center on the boundary of the other two. Constant width means that the separation of every two parallel supporting lines ...
The beam diameter or beam width of an electromagnetic beam is the diameter along any specified line that is perpendicular to the beam axis and intersects it. Since beams typically do not have sharp edges, the diameter can be defined in many different ways. Five definitions of the beam width are in common use: D4σ, 10/90 or 20/80 knife-edge, 1 ...
These Reuleaux polygons have constant width, and all have the same width; therefore by Barbier's theorem they also have equal perimeters. In geometry, Barbier's theorem states that every curve of constant width has perimeter π times its width, regardless of its precise shape. [1] This theorem was first published by Joseph-Émile Barbier in 1860.