Search results
Results from the WOW.Com Content Network
t. e. In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point.
v. t. e. In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order of the Taylor series of the function.
Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.
This formula can be obtained by Taylor series expansion: (+) = + ′ ()! ″ ()! () +. The complex-step derivative formula is only valid for calculating first-order derivatives. A generalization of the above for calculating derivatives of any order employs multicomplex numbers , resulting in multicomplex derivatives.
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.
The extremely slow convergence of the arctangent series for | | makes this formula impractical per se. Kerala-school mathematicians used additional correction terms to speed convergence. John Machin (1706) expressed 1 4 π {\displaystyle {\tfrac {1}{4}}\pi } as a sum of arctangents of smaller values, eventually resulting in a variety of ...
Universal Taylor series. A universal Taylor series is a formal power series , such that for every continuous function on , if , then there exists an increasing sequence of positive integers such that In other words, the set of partial sums of is dense (in sup-norm) in , the set of continuous functions on that is zero at origin. [ 1]
Linear approximation. Approximation of a function by its tangent line at a point. Tangent line at (a, f (a)) In mathematics, a linear approximation is an approximation of a general function using a linear function (more precisely, an affine function). They are widely used in the method of finite differences to produce first order methods for ...