Search results
Results from the WOW.Com Content Network
In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]
Fermat–Catalan conjecture. In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many ...
Cauchy–Riemann equations. A visual depiction of a vector X in a domain being multiplied by a complex number z, then mapped by f, versus being mapped by f then being multiplied by z afterwards. If both of these result in the point ending up in the same place for all X and z, then f satisfies the Cauchy–Riemann condition.
Determinant. In mathematics, the determinant is a scalar -valued function of the entries of a square matrix. The determinant of a matrix A is commonly denoted det (A), det A, or |A|. Its value characterizes some properties of the matrix and the linear map represented, on a given basis, by the matrix. In particular, the determinant is nonzero if ...
In the following Diophantine equations, w, x, y, and z are the unknowns and the other letters are given constants: a x + b y = c {\displaystyle ax+by=c} This is a linear Diophantine equation or Bézout's identity. w 3 + x 3 = y 3 + z 3 {\displaystyle w^ {3}+x^ {3}=y^ {3}+z^ {3}} The smallest nontrivial solution in positive integers is 123 + 13 ...
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, it is possible to expand the polynomial (x + y) n into a sum involving terms of the form ax b y c, where the exponents b and c are nonnegative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending ...
You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563.
Fermat's Last Theorem, formulated in 1637, states that no three positive integers a, b, and c can satisfy the equation + = if n is an integer greater than two (n > 2).. Over time, this simple assertion became one of the most famous unproved claims in mathematics.