enow.com Web Search

  1. Ads

    related to: number of positive cubes in math
  2. teacherspayteachers.com has been visited by 100K+ users in the past month

    • Assessment

      Creative ways to see what students

      know & help them with new concepts.

    • Resources on Sale

      The materials you need at the best

      prices. Shop limited time offers.

    • Packets

      Perfect for independent work!

      Browse our fun activity packs.

    • Try Easel

      Level up learning with interactive,

      self-grading TPT digital resources.

Search results

  1. Results from the WOW.Com Content Network
  2. Taxicab number - Wikipedia

    en.wikipedia.org/wiki/Taxicab_number

    In mathematics, the n th taxicab number, typically denoted Ta (n) or Taxicab (n), is defined as the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways. [1] The most famous taxicab number is 1729 = Ta (2) = 1 3 + 12 3 = 9 3 + 10 3, also known as the Hardy-Ramanujan number. [2][3]

  3. 1729 (number) - Wikipedia

    en.wikipedia.org/wiki/1729_(number)

    1729 can be expressed as a sum of two positive cubes in two ways, illustrated geometrically. 1729 is also known as Ramanujan number or Hardy–Ramanujan number, named after an anecdote of the British mathematician G. H. Hardy when he visited Indian mathematician Srinivasa Ramanujan in hospital.

  4. Cube (algebra) - Wikipedia

    en.wikipedia.org/wiki/Cube_(algebra)

    Cube (algebra) y = x3 for values of 1 ≤ x ≤ 25. In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number or any other mathematical expression is denoted by a superscript 3, for example 23 = 8 or (x + 1)3. The cube is also the number ...

  5. Sum of two cubes - Wikipedia

    en.wikipedia.org/wiki/Sum_of_two_cubes

    A Cabtaxi number is the smallest positive number that can be expressed as a sum of two integer cubes in n ways, allowing the cubes to be negative or zero as well as positive. The smallest cabtaxi number after Cabtaxi (1) = 0, is Cabtaxi (2) = 91, [5] expressed as: Cabtaxi (3), the smallest Cabtaxi number expressed in 3 different ways, is 4104 ...

  6. 216 (number) - Wikipedia

    en.wikipedia.org/wiki/216_(number)

    In mathematics. 216 is the cube of 6, and the sum of three cubes: It is the smallest cube that can be represented as a sum of three positive cubes, [1] making it the first nontrivial example for Euler's sum of powers conjecture. It is, moreover, the smallest number that can be represented as a sum of any number of distinct positive cubes in ...

  7. Waring's problem - Wikipedia

    en.wikipedia.org/wiki/Waring's_problem

    In number theory, Waring's problem asks whether each natural number k has an associated positive integer s such that every natural number is the sum of at most s natural numbers raised to the power k. For example, every natural number is the sum of at most 4 squares, 9 cubes, or 19 fourth powers. Waring's problem was proposed in 1770 by Edward ...

  8. Carmichael number - Wikipedia

    en.wikipedia.org/wiki/Carmichael_number

    The second Carmichael number (1105) can be expressed as the sum of two squares in more ways than any smaller number. The third Carmichael number (1729) is the Hardy-Ramanujan Number: the smallest number that can be expressed as the sum of two cubes (of positive numbers) in two different ways.

  9. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    More generally, a positive integer c is the hypotenuse of a primitive Pythagorean triple if and only if each prime factor of c is congruent to 1 modulo 4; that is, each prime factor has the form 4n + 1. In this case, the number of primitive Pythagorean triples (a, b, c) with a < b is 2 k−1, where k is the number of distinct prime factors of c ...

  1. Ads

    related to: number of positive cubes in math