Search results
Results from the WOW.Com Content Network
In mathematics, the n th taxicab number, typically denoted Ta (n) or Taxicab (n), is defined as the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways. [1] The most famous taxicab number is 1729 = Ta (2) = 1 3 + 12 3 = 9 3 + 10 3, also known as the Hardy-Ramanujan number. [2][3]
Duodecimal. 1001 12. Hexadecimal. 6C1 16. 1729 is the natural number following 1728 and preceding 1730. It is the first nontrivial taxicab number, expressed as the sum of two cubic numbers in two different ways. It is also known as the Ramanujan number or Hardy–Ramanujan number, named after G. H. Hardy and Srinivasa Ramanujan.
Cube (algebra) y = x3 for values of 1 ≤ x ≤ 25. In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number or any other mathematical expression is denoted by a superscript 3, for example 23 = 8 or (x + 1)3. The cube is also the number ...
In the mathematics of sums of powers, it is an open problem to characterize the numbers that can be expressed as a sum of three cubes of integers, allowing both positive and negative cubes in the sum. A necessary condition for an integer to equal such a sum is that cannot equal 4 or 5 modulo 9, because the cubes modulo 9 are 0, 1, and −1, and ...
In number theory, Waring's problem asks whether each natural number k has an associated positive integer s such that every natural number is the sum of at most s natural numbers raised to the power k. For example, every natural number is the sum of at most 4 squares, 9 cubes, or 19 fourth powers. Waring's problem was proposed in 1770 by Edward ...
The second Carmichael number (1105) can be expressed as the sum of two squares in more ways than any smaller number. The third Carmichael number (1729) is the Hardy-Ramanujan Number: the smallest number that can be expressed as the sum of two cubes (of positive numbers) in two different ways.
In mathematics. 216 is the cube of 6, and the sum of three cubes: It is the smallest cube that can be represented as a sum of three positive cubes, [1] making it the first nontrivial example for Euler's sum of powers conjecture. It is, moreover, the smallest number that can be represented as a sum of any number of distinct positive cubes in ...
Cabtaxi number. In number theory, the n -th cabtaxi number, typically denoted Cabtaxi (n), is defined as the smallest positive integer that can be written as the sum of two positive or negative or 0 cubes in n ways. [ 1] Such numbers exist for all n, which follows from the analogous result for taxicab numbers .