enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Transformation of coordinates (a,b) when shifting the reflection angle in increments of When the direction of a Euclidean vector is represented by an angle θ , {\displaystyle \theta ,} this is the angle determined by the free vector (starting at the origin) and the positive x {\displaystyle x} -unit vector.

  3. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    Let ABC be a triangle with side lengths a, b, and c, with a 2 + b 2 = c 2. Construct a second triangle with sides of length a and b containing a right angle. By the Pythagorean theorem, it follows that the hypotenuse of this triangle has length c = √ a 2 + b 2, the same as the hypotenuse of the first triangle.

  4. Pythagorean quadruple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_quadruple

    If a and b have different parity, let p be any factor of a 2 + b 2 such that p 2 < a 2 + b 2. Then c = ⁠ a 2 + b 2 − p 2 / 2p ⁠ and d = ⁠ a 2 + b 2 + p 2 / 2p ⁠. Note that p = d − c. A similar method exists [5] for generating all Pythagorean quadruples for which a and b are both even. Let l = ⁠ a / 2 ⁠ and m = ⁠ b / 2 ⁠ and ...

  5. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The dotted vector, in this case B, is differentiated, while the (undotted) A is held constant. The utility of the Feynman subscript notation lies in its use in the derivation of vector and tensor derivative identities, as in the following example which uses the algebraic identity C ⋅( A × B ) = ( C × A )⋅ B :

  6. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...

  7. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    The concept of unit circle (the set of all vectors of norm 1) is different in different norms: for the 1-norm, the unit circle is a square oriented as a diamond; for the 2-norm (Euclidean norm), it is the well-known unit circle; while for the infinity norm, it is an axis-aligned square.

  8. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.

  9. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    Animation demonstrating the smallest Pythagorean triple, 3 2 + 4 2 = 5 2. A Pythagorean triple consists of three positive integers a, b, and c, such that a 2 + b 2 = c 2.Such a triple is commonly written (a, b, c), a well-known example is (3, 4, 5).