Search results
Results from the WOW.Com Content Network
is the Diffusion coefficient [2] and is the Source term. [3] A portion of the two dimensional grid used for Discretization is shown below: Graph of 2 dimensional plot. In addition to the east (E) and west (W) neighbors, a general grid node P, now also has north (N) and south (S) neighbors.
The diffusion equation is a parabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion , resulting from the random movements and collisions of the particles (see Fick's laws of diffusion ).
Solution in the central difference scheme fails to converge for Peclet number greater than 2 which can be overcome by using an upwind scheme to give a reasonable result. [1]: Fig. 5.5, 5.13 Therefore the upwind differencing scheme is applicable for Pe > 2 for positive flow and Pe < −2 for negative flow. For other values of Pe, this scheme ...
The unsteady convection–diffusion problem is considered, at first the known temperature T is expanded into a Taylor series with respect to time taking into account its three components. Next, using the convection diffusion equation an equation is obtained from the differentiation of this equation.
The convection–diffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...
The hybrid difference scheme [1] [2] is a method used in the numerical solution for convection–diffusion problems. It was introduced by Spalding (1970). It is a combination of central difference scheme and upwind difference scheme as it exploits the favorable properties of both of these schemes. [3] [4]
The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.
where is a factor of converting the 3D diffusive adsorption problem into a 1D diffusion problem whose value depends on the system, e.g., a fraction of adsorption area over solute nearest neighbor sphere surface area / assuming cubic packing each unit has 8 neighbors shared with other units. This example fraction converges the result to the 3D ...