enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Impulse (physics) - Wikipedia

    en.wikipedia.org/wiki/Impulse_(physics)

    t 1 and t 2 are times when the impulse begins and ends, respectively, m is the mass of the object, v 2 is the final velocity of the object at the end of the time interval, and; v 1 is the initial velocity of the object when the time interval begins. Impulse has the same units and dimensions (MLT −1) as momentum.

  3. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  4. Specific impulse - Wikipedia

    en.wikipedia.org/wiki/Specific_impulse

    If mass is used, specific impulse is an impulse per unit of mass, which dimensional analysis shows to be equivalent to units of speed; this interpretation is commonly labeled the effective exhaust velocity. If a force-based unit system is used, impulse is divided by propellant weight (weight is a measure of force), resulting in units of time.

  5. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    Mass is constant, therefore angular momentum rmv ⊥ is conserved by this exchange of distance and velocity. In the case of triangle SBC, area is equal to ⁠ 1 / 2 ⁠ (SB)(VC). Wherever C is eventually located due to the impulse applied at B, the product (SB)(VC), and therefore rmv ⊥ remain constant. Similarly so for each of the triangles.

  6. Delta-v budget - Wikipedia

    en.wikipedia.org/wiki/Delta-v_budget

    The Tsiolkovsky rocket equation shows that the delta-v of a rocket (stage) is proportional to the logarithm of the fuelled-to-empty mass ratio of the vehicle, and to the specific impulse of the rocket engine. A key goal in designing space-mission trajectories is to minimize the required delta-v to reduce the size and expense of the rocket that ...

  7. Spacecraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Spacecraft_flight_dynamics

    α is the angle of attack; m is the vehicle's mass; D is the vehicle's aerodynamic drag; L is its aerodynamic lift; r is the radial distance to the planet's center; and; g is the gravitational acceleration at altitude. Mass decreases as propellant is consumed and rocket stages, engines or tanks are shed (if applicable).

  8. Delta-v - Wikipedia

    en.wikipedia.org/wiki/Delta-v

    Delta-v (also known as "change in velocity"), symbolized as and pronounced /dɛltə viː/, as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver.

  9. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    [5]: 174 The Dirac delta is used to model a tall narrow spike function (an impulse), and other similar abstractions such as a point charge, point mass or electron point. For example, to calculate the dynamics of a billiard ball being struck, one can approximate the force of the impact by a Dirac delta.