Search results
Results from the WOW.Com Content Network
Function CRC32 Input: data: Bytes // Array of bytes Output: crc32: UInt32 // 32-bit unsigned CRC-32 value // Initialize CRC-32 to starting value crc32 ← 0xFFFFFFFF for each byte in data do nLookupIndex ← (crc32 xor byte) and 0xFF crc32 ← (crc32 shr 8) xor CRCTable[nLookupIndex] // CRCTable is an array of 256 32-bit constants
To compute an n-bit binary CRC, line the bits representing the input in a row, and position the (n + 1)-bit pattern representing the CRC's divisor (called a "polynomial") underneath the left end of the row. In this example, we shall encode 14 bits of message with a 3-bit CRC, with a polynomial x 3 + x + 1.
Turbo coding is an iterated soft-decoding scheme that combines two or more relatively simple convolutional codes and an interleaver to produce a block code that can perform to within a fraction of a decibel of the Shannon limit.
A BCH code with = is called a narrow-sense BCH code.; A BCH code with = is called primitive.; The generator polynomial () of a BCH code has coefficients from (). In general, a cyclic code over () with () as the generator polynomial is called a BCH code over ().
A CRC has properties that make it well suited for detecting burst errors. CRCs are particularly easy to implement in hardware and are therefore commonly used in computer networks and storage devices such as hard disk drives. The parity bit can be seen as a special-case 1-bit CRC.
In standard ARQ, redundant bits are added to data to be transmitted using an error-detecting (ED) code such as a cyclic redundancy check (CRC). Receivers detecting a corrupted message will request a new message from the sender.
In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3]
In this respect, the Fletcher checksum is not different from other checksum and CRC algorithms and needs no special explanation. An ordering problem that is easy to envision occurs when the data word is transferred byte-by-byte between a big-endian system and a little-endian system and the Fletcher-32 checksum is computed.