Search results
Results from the WOW.Com Content Network
Chapter 9.3 of The Art of Assembly by Randall Hyde discusses multiprecision arithmetic, with examples in x86-assembly. Rosetta Code task Arbitrary-precision integers Case studies in the style in which over 95 programming languages compute the value of 5**4**3**2 using arbitrary precision arithmetic.
For example, TensorFlow Recommenders and TensorFlow Graphics are libraries for their respective functionalities in recommendation systems and graphics, TensorFlow Federated provides a framework for decentralized data, and TensorFlow Cloud allows users to directly interact with Google Cloud to integrate their local code to Google Cloud. [68]
Rule 110 - most questions involving "can property X appear later" are undecidable. The problem of determining whether a quantum mechanical system has a spectral gap. [8] [9] Finding the capacity of an information-stable finite state machine channel. [10] In network coding, determining whether a network is solvable. [11] [12]
Most decimal fractions (or most fractions in general) cannot be represented exactly as a fraction with a denominator that is a power of two. For example, the simple decimal fraction 0.3 (3 ⁄ 10) might be represented as 5404319552844595 ⁄ 18014398509481984 (0.299999999999999988897769…). This inexactness causes many problems that are ...
An alternate form of (2) – the machine successively prints all n of the digits on its tape, halting after printing the nth – emphasizes Minsky's observation: (3) That by use of a Turing machine, a finite definition – in the form of the machine's state table – is being used to define what is a potentially infinite string of decimal digits.
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
Decimal: The standard Hindu–Arabic numeral system using base ten. Binary: The base-two numeral system used by computers, with digits 0 and 1. Ternary: The base-three numeral system with 0, 1, and 2 as digits. Quaternary: The base-four numeral system with 0, 1, 2, and 3 as digits.