enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric functions, described in Fourier series§Definition. The study of the convergence of Fourier series focus on the behaviors of the partial sums, which means studying the behavior of the sum as more and more terms from the series are summed.

  3. Fourier sine and cosine series - Wikipedia

    en.wikipedia.org/wiki/Fourier_sine_and_cosine_series

    An Elementary Treatise on Fourier's Series: And Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (2 ed.). Ginn. p. 30. Carslaw, Horatio Scott (1921). "Chapter 7: Fourier's Series". Introduction to the Theory of Fourier's Series and Integrals, Volume 1 (2 ed.). Macmillan and Company. p. 196.

  4. Fourier analysis - Wikipedia

    en.wikipedia.org/wiki/Fourier_analysis

    The inverse transform, known as Fourier series, is a representation of () in terms of a summation of a potentially infinite number of harmonically related sinusoids or complex exponential functions, each with an amplitude and phase specified by one of the coefficients:

  5. Convergence of Fourier series - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_Fourier_series

    If f is of bounded variation, then its Fourier series converges everywhere. If f is additionally continuous, the convergence is uniform. [6] If f is continuous and its Fourier coefficients are absolutely summable, then the Fourier series converges uniformly. [7] There exist continuous functions whose Fourier series converges pointwise but not ...

  6. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    If () is a periodic function, with period , that has a convergent Fourier series, then: ^ = = (), where are the Fourier series coefficients of , and is the Dirac delta function. In other words, the Fourier transform is a Dirac comb function whose teeth are multiplied by the Fourier series coefficients.

  7. Harmonic analysis - Wikipedia

    en.wikipedia.org/wiki/Harmonic_analysis

    Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.

  8. List of Fourier-related transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Fourier-related...

    These are called Fourier series coefficients. The term Fourier series actually refers to the inverse Fourier transform, which is a sum of sinusoids at discrete frequencies, weighted by the Fourier series coefficients. When the non-zero portion of the input function has finite duration, the Fourier transform is continuous and finite-valued.

  9. Poisson summation formula - Wikipedia

    en.wikipedia.org/wiki/Poisson_summation_formula

    In mathematics, the Poisson summation formula is an equation that relates the Fourier series coefficients of the periodic summation of a function to values of the function's continuous Fourier transform. Consequently, the periodic summation of a function is completely defined by discrete samples of the original function's Fourier transform.