Search results
Results from the WOW.Com Content Network
Hyperalgesia (/ ˌ h aɪ p ər æ l ˈ dʒ iː z i ə / or /-s i ə /; hyper from Greek ὑπέρ (huper) 'over' + -algesia from Greek ἄλγος (algos) 'pain') is an abnormally increased sensitivity to pain, which may be caused by damage to nociceptors or peripheral nerves and can cause hypersensitivity to stimulus.
Hypoalgesia or hypalgesia denotes a decreased sensitivity to painful stimuli. Hypoalgesia occurs when nociceptive (painful) stimuli are interrupted or decreased somewhere along the path between the input (nociceptors), and the places where they are processed and recognized as pain in the conscious mind. Hypoalgesic effects can be mild, such as ...
Patients with such mutations are congenitally insensitive to pain and lack other neuropathies. There are three mutations in SCN9A: W897X, located in the P-loop of domain 2; I767X, located in the S2 segment of domain 2; and S459X, located in the linker region between domains 1 and 2. This results in a truncated non-functional protein.
' pain receptor ') is a sensory neuron that responds to damaging or potentially damaging stimuli by sending "possible threat" signals [1] [2] [3] to the spinal cord and the brain. The brain creates the sensation of pain to direct attention to the body part, so the threat can be mitigated; this process is called nociception.
Pain motivates organisms to withdraw from damaging situations, to protect a damaged body part while it heals, and to avoid similar experiences in the future. [2] Most pain resolves once the noxious stimulus is removed and the body has healed, but it may persist despite removal of the stimulus and apparent healing of the body. Sometimes pain ...
Opioid-induced hyperalgesia (OIH) or opioid-induced abnormal pain sensitivity, also called paradoxical hyperalgesia, is an uncommon condition of generalized pain caused by the long-term use of high dosages of opioids [1] such as morphine, [2] oxycodone, [3] and methadone. [4] [5] OIH is not necessarily confined to the original affected site. [6]
Increased touch sensitivity is referred to as "tactile hyperesthesia", and increased sound sensitivity is called "auditory hyperesthesia". In the context of pain, hyperaesthesia can refer to an increase in sensitivity where there is both allodynia and hyperalgesia .
This argument-by-analogy approach to the concept of pain in invertebrates has been followed by others. [2] The ability to experience nociception has been subject to natural selection and offers the advantage of reducing further harm to the organism. While it might be expected therefore that nociception is widespread and robust, nociception ...