Search results
Results from the WOW.Com Content Network
This updating is an important part of the disjoint-set forest's amortized performance guarantee. There are several algorithms for Find that achieve the asymptotically optimal time complexity. One family of algorithms, known as path compression, makes every node between the query node and the root point to the root. Path compression can be ...
The pseudocode below determines the lowest common ancestor of each pair in P, given the root r of a tree in which the children of node n are in the set n.children. For this offline algorithm, the set P must be specified in advance. It uses the MakeSet, Find, and Union functions of a disjoint-set data structure.
A disjoint collection of sets. This definition of disjoint sets can be extended to families of sets and to indexed families of sets. By definition, a collection of sets is called a family of sets (such as the power set, for example). In some sources this is a set of sets, while other sources allow it to be a multiset of
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
An efficient implementation using a disjoint-set data structure can perform each union and find operation on two sets in nearly constant amortized time (specifically, (()) time; () < for any plausible value of ), so the running time of this algorithm is essentially proportional to the number of walls available to the maze.
In mathematics, the disjoint union (or discriminated union) of the sets A and B is the set formed from the elements of A and B labelled (indexed) with the name of the set from which they come. So, an element belonging to both A and B appears twice in the disjoint union, with two different labels.
The vertex-connectivity statement of Menger's theorem is as follows: . Let G be a finite undirected graph and x and y two nonadjacent vertices. Then the size of the minimum vertex cut for x and y (the minimum number of vertices, distinct from x and y, whose removal disconnects x and y) is equal to the maximum number of pairwise internally disjoint paths from x to y.
As a set, it is their disjoint union and is the obvious map that takes the value on the stalk of over . The topology of E {\displaystyle E} is defined as follows. For each element s ∈ F ( U ) {\displaystyle s\in F(U)} and each x ∈ U {\displaystyle x\in U} , we get a germ of s {\displaystyle s} at x {\displaystyle x} , denoted [ s ] x ...