Search results
Results from the WOW.Com Content Network
The μ-recursive functions (or general recursive functions) are partial functions that take finite tuples of natural numbers and return a single natural number. They are the smallest class of partial functions that includes the initial functions and is closed under composition, primitive recursion, and the minimization operator μ .
In mathematics, the successor function or successor operation sends a natural number to the next one. The successor function is denoted by S, so S(n) = n + 1. For example, S(1) = 2 and S(2) = 3. The successor function is one of the basic components used to build a primitive recursive function.
But if this equals some primitive recursive function, there is an m such that h(n) = f(m,n) for all n, and then h(m) = f(m,m), leading to contradiction. However, the set of primitive recursive functions is not the largest recursively enumerable subset of the set of all total recursive functions. For example, the set of provably total functions ...
Recursive function may refer to: Recursive function (programming), a function which references itself; General recursive function, a computable partial function from natural numbers to natural numbers Primitive recursive function, a function which can be computed with loops of bounded length; Another name for computable function
Most recursive definitions have two foundations: a base case (basis) and an inductive clause. The difference between a circular definition and a recursive definition is that a recursive definition must always have base cases, cases that satisfy the definition without being defined in terms of the definition itself, and that all other instances in the inductive clauses must be "smaller" in some ...
where a represents the number of recursive calls at each level of recursion, b represents by what factor smaller the input is for the next level of recursion (i.e. the number of pieces you divide the problem into), and f(n) represents the work that the function does independently of any recursion (e.g. partitioning, recombining) at each level ...
The factorial function provides a good example of how a fixed-point combinator may be used to define recursive functions. The standard recursive definition of the factorial function in mathematics can be written as
All primitive recursive functions are total and computable, but the Ackermann function illustrates that not all total computable functions are primitive recursive. After Ackermann's publication [ 2 ] of his function (which had three non-negative integer arguments), many authors modified it to suit various purposes, so that today "the Ackermann ...