enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Empirical Bayes method - Wikipedia

    en.wikipedia.org/wiki/Empirical_Bayes_method

    Empirical Bayes methods can be seen as an approximation to a fully Bayesian treatment of a hierarchical Bayes model.. In, for example, a two-stage hierarchical Bayes model, observed data = {,, …,} are assumed to be generated from an unobserved set of parameters = {,, …,} according to a probability distribution ().

  3. James–Stein estimator - Wikipedia

    en.wikipedia.org/wiki/James–Stein_estimator

    The James–Stein estimator may seem at first sight to be a result of some peculiarity of the problem setting. In fact, the estimator exemplifies a very wide-ranging effect; namely, the fact that the "ordinary" or least squares estimator is often inadmissible for simultaneous estimation of several parameters.

  4. Shrinkage (statistics) - Wikipedia

    en.wikipedia.org/wiki/Shrinkage_(statistics)

    In statistics, shrinkage is the reduction in the effects of sampling variation. In regression analysis , a fitted relationship appears to perform less well on a new data set than on the data set used for fitting. [ 1 ]

  5. Estimation of covariance matrices - Wikipedia

    en.wikipedia.org/wiki/Estimation_of_covariance...

    For large samples, the shrinkage intensity will reduce to zero, hence in this case the shrinkage estimator will be identical to the empirical estimator. Apart from increased efficiency the shrinkage estimate has the additional advantage that it is always positive definite and well conditioned. Various shrinkage targets have been proposed:

  6. Bayesian hierarchical modeling - Wikipedia

    en.wikipedia.org/wiki/Bayesian_hierarchical_modeling

    The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the uncertainty that is present. The result of this integration is the posterior distribution, also known as the updated probability estimate, as additional evidence on the prior distribution is acquired.

  7. Bayes estimator - Wikipedia

    en.wikipedia.org/wiki/Bayes_estimator

    A Bayes estimator derived through the empirical Bayes method is called an empirical Bayes estimator. Empirical Bayes methods enable the use of auxiliary empirical data, from observations of related parameters, in the development of a Bayes estimator. This is done under the assumption that the estimated parameters are obtained from a common prior.

  8. Best linear unbiased prediction - Wikipedia

    en.wikipedia.org/wiki/Best_linear_unbiased...

    Best linear unbiased predictions" (BLUPs) of random effects are similar to best linear unbiased estimates (BLUEs) (see Gauss–Markov theorem) of fixed effects. The distinction arises because it is conventional to talk about estimating fixed effects but about predicting random effects, but the two terms are otherwise equivalent. (This is a bit ...

  9. Bayesian experimental design - Wikipedia

    en.wikipedia.org/wiki/Bayesian_experimental_design

    Given a vector of parameters to determine, a prior probability () over those parameters and a likelihood (,) for making observation , given parameter values and an experiment design , the posterior probability can be calculated using Bayes' theorem